正反比例应用题解题方法(共2页).docx
《正反比例应用题解题方法(共2页).docx》由会员分享,可在线阅读,更多相关《正反比例应用题解题方法(共2页).docx(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上正反比例应用题解题方法学习正、反比例应用题能进一步加深同学们对数量关系的分析和认识,培养学生分析问题和解决问题的能力,它同时渗透了一定的函数思想,是同学们今后学习初中各门知识的基础。正、反比例应用题的学习是在学习归一问题与归总问题基础上进行,同学们只要利用好归一问题与归总问题的知识要点就能学习好正、反比例应用题。例如:一列火车4小时行240千米,照这样的速度,7小时行多少千米?“照这样的速度”是归一问题的典型标志。这里的每小时平均速度就是这道题里的“单一量”。照这样的速度,就是以“单一量”为标准,再求出7小时所行的路程是607=420(千米)。因为4小时行240千米,
2、所以,每小时平均速度是2404=60(千米)。再例如:一项工程8个人22天可以完工,如果11个人做几天完工?这是一道归总问题,“8个人22天可以完工”依据这句话可以把整个工程看成822份,这个总份数是不变的,根据这个不变的总数,我们用822的积除以11,就得出了要求的问题。我们学习正、反比例应用题正是利用这个不变的量来解决问题的。同学们要正确理解并紧紧抓住正、反比例的意义,首先要找出应用题中哪两种数量是相关联的量,“谁”是一定的量。如果两种相关联的量相除后等于一定的量,即y/x=k(一定),那么这两种相关联的量是成正比例的量,它们之间的关系是正比例关系即归一问题;如果两种相关联的量相乘后等于一
3、定的量,即xy=k(一定),那么这两种相关联的量是成反比例的量,它们之间的关系是反比例的关系,即归总问题。 例1:一列火车4小时行240千米,照这样的速度,7小时行多少千米?题中路程和时间是两种相关联的量,速度是一定的量,(照这样的速度就是说速度是一定的)因为路程/时间=速度(一定),所以路程和时间是成正比例的量,它们之间的关系是正比例关系,说明例题是用正比例解答的应用题。例2:一辆汽车从甲地开往乙地,每小时行驶60千米,4小时到达。如果要3小时到达,每小时需行驶多少千米?题中速度和时间是两种相关联的量,路程是一定的量(就是说甲乙两地的路程是一定的),因为速度时间=路程(一定),所以速度和时间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正反 比例 应用题 解题 方法
限制150内