求值域的10种方法(共12页).doc
《求值域的10种方法(共12页).doc》由会员分享,可在线阅读,更多相关《求值域的10种方法(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上求函数值域的十种方法一直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。例1求函数的值域。【解析】,函数的值域为。【练习】1求下列函数的值域:;,。【参考答案】;。二配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如的函数的值域问题,均可使用配方法。例2求函数()的值域。【解析】。,。函数()的值域为。例3求函数的值域。【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。例4若,试求的最大值
2、。【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。利用两点,确定一条直线,作出图象易得:,y=1时,取最大值。【练习】2求下列函数的最大值、最小值与值域:;,;。【参考答案】;三反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。适用类型:分子、分母只含有一次项的函数(即有理分式一次型),也可用于其它易反解出自变量的函数类型。例5求函数的值域。分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。反解得,故函数的值域为。【练习】1求函数的值域。2求函数,的值域。【参考答案】1;。四分离变量法:适用类型1:分子、分母是
3、一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。例6:求函数的值域。解:,函数的值域为。适用类型2:分式且分子、分母中有相似的项,通过该方法可将原函数转化为为(常数)的形式。例7:求函数的值域。分析与解:观察分子、分母中均含有项,可利用分离变量法;则有 。不妨令:从而。注意:在本题中若出现应排除,因为作为分母.所以故。另解:观察知道本题中分子较为简单,可令,求出的值域,进而可得到的值域。【练习】1求函数的值域。【参考答案】1五、换元法:对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑通过换元的方法将原函数转化为简单的熟悉的基本函数。其题型特征是函数解析式含有根式
4、或三角函数公式模型,当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元。例8:求函数的值域。解:令(),则,。当,即时,无最小值。函数的值域为。例9:求函数的值域。解:因,即。故可令,。,故所求函数的值域为。例10.求函数的值域。解:原函数可变形为:可令X=,则有当时,当时,而此时有意义。故所求函数的值域为 例11. 求函数,的值域。解:令,则由且可得:当时,当时,故所求函数的值域为。 例12. 求函数的值域。解:由,可得故可令当时,当时,故所求函数的值域为:六、判别式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域,形如(、不同时为零)的函数的值域,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 值域 10 方法 12
限制150内