爬山算法、模拟退火算法、遗传算法(共6页).docx
《爬山算法、模拟退火算法、遗传算法(共6页).docx》由会员分享,可在线阅读,更多相关《爬山算法、模拟退火算法、遗传算法(共6页).docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一. 爬山算法 ( Hill Climbing )介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。二. 模拟退火(SA,Simulated Annealing)思想(跟人一样找不到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的
2、念头)爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。若J( Y(i+1) )= J( Y(i) ) (即移动后得到更优解),则总是接受该移动若J( Y(i+1) ) J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移
3、动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT T_min )dE = J( Y(i+1) ) - J( Y(i) ) ; if ( dE =0 ) /表达移动后得到更
4、优解,则总是接受移动Y(i+1) = Y(i) ; /接受从Y(i)到Y(i+1)的移动else/ 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也if ( exp( dE/T ) random( 0 , 1 ) )Y(i+1) = Y(i) ; /接受从Y(i)到Y(i+1)的移动T = r * T ; /降温退火 ,0r1 。r越大,降温越慢;r越小,降温越快/* 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值*/i + ;模拟退火算法是一种随机算法,并不一定能找到全局
5、的最优解,可以比较快的找到问题的近似最优解。如果参数设置得当,模拟退火算法搜索效率比穷举法要高。遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。个体:组成种群的单个生物。基因 ( Gene ) :一个遗传因子。染色体 ( Chromosome ) :包含一组的基因。生存竞争,适者生存:对环境适应度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 爬山 算法 模拟 退火 遗传
限制150内