毕业设计外文文献翻译(共25页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《毕业设计外文文献翻译(共25页).doc》由会员分享,可在线阅读,更多相关《毕业设计外文文献翻译(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上毕业设计(论文)外文资料翻译系 别: 专 业: 班 级: 姓 名: 学 号: 外文出处: 附 件: 1. 原文; 2. 译文 2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J.J. Paredis, H. Benjamin Brown, Pradeep K. KhoslaAbstract: A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware wi
2、th modular programming tools, allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system, namely, the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software.1 Introduct
3、ionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure.Forexample, a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting he
4、avy objects in the vertical direction. Therefore, to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure. We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators. As
5、is illustrated in Figure 1, a rapidly deployable manipulator system consists of software and hardware that allow the user to rapidly build and program a manipulator which is customtailored for a given task. The central building block of a rapidly deployable system is a Reconfigurable Modular Manipul
6、ator System (RMMS). The RMMS utilizes a stock of interchangeable link and joint modules of various sizes and performance specifications. One such module is shown in Figure 2. By combining these general purpose modules, a wide range of special purpose manipulators can be assembled. Recently, there ha
7、s been considerable interest in the idea of modular manipulators 2, 4, 5, 7, 9, 10, 14, for research applications as well as for industrial applications. However, most of these systems lack the property of reconfigurability, which is key to the concept of rapidly deployable systems. The RMMS is part
8、icularly easy to reconfigure thanks to its integrated quick-coupling connectors described in Section 3.Effective use of the RMMS requires, Task Based Design software. This software takes as input descriptions of the task and of the available manipulator modules; it generates as output a modular asse
9、mbly configuration optimally suited to perform the given task. Several different approaches have been used successfully to solve simpli-fied instances of this complicated problem. A third important building block of a rapidly deployable manipulator system is a framework for the generation of control
10、 software. To reduce the complexity of softwaregeneration for real-time sensor-based control systems, a software paradigm called software assembly has been proposed in the Advanced Manipulators Laboratory at CMU.This paradigm combines the concept of reusable and reconfigurable software components, a
11、s is supported by the Chimera real-time operating system 15, with a graphical user interface and a visual programming language, implemented in OnikaAlthough the software assembly paradigm provides thesoftware infrastructure for rapidly programming manipulator systems, it does not solve the programmi
12、ng problem itself. Explicit programming of sensor-based manipulator systems is cumbersome due to the extensive amount of detail which must be specified for the robot to perform the task. The software synthesis problem for sensor-based robots can be simplified dramatically, by providing robust roboti
13、c skills, that is, encapsulated strategies for accomplishing common tasks in the robots task domain 11. Such robotic skills can then be used at the task level planning stage without having to consider any of the low-level detailsAs an example of the use of a rapidly deployable system,consider a mani
14、pulator in a nuclear environment where it must inspect material and space for radioactive contamination, or assemble and repair equipment. In such an environment, widely varied kinematic (e.g., workspace) and dynamic (e.g., speed, payload) performance is required, and these requirements may not be k
15、nown a priori. Instead of preparing a large set of different manipulators to accomplish these tasksan expensive solutionone can use a rapidly deployable manipulator system. Consider the following scenario: as soon as a specific task is identified, the task based design software determinesthe task. T
16、his optimal configuration is thenassembled from the RMMS modules by a human or, in the future, possibly by another manipulator. The resulting manipulator is rapidly programmed by using the software assembly paradigm and our library of robotic skills. Finally,the manipulator is deployed to perform it
17、s task.Although such a scenario is still futuristic, the development of the reconfigurable modular manipulator system, described in this paper, is a major step forward towards our goal of a rapidly deployable manipulator system.Our approach could form the basis for the next generation of autonomous
18、manipulators, in which the traditional notion of sensor-based autonomy is extended to configuration-based autonomy. Indeed, although a deployed system can have all the sensory and planning information it needs, it may still not be able to accomplish its task because the task is beyond the systems ph
19、ysical capabilities. A rapidly deployable system, on the other hand, could adapt its physical capabilities based on task specifications and, with advanced sensing, control, and planning strategies, accomplish the task autonomously.2 Design of self-contained hardware modulesIn most industrial manipul
20、ators, the controller is a separate unit housing the sensor interfaces, power amplifiers, and control processors for all the joints of the manipulator.A large number of wires is necessary to connect this control unit with the sensors, actuators and brakes located in each of the joints of the manipul
21、ator. The large number of electrical connections and the non-extensible nature of such a system layout make it infeasible for modular manipulators. The solution we propose is to distribute the control hardware to each individual module of the manipulator. These modules then become self-contained uni
22、ts which include sensors, an actuator, a brake, a transmission, a sensor interface, a motor amplifier, and a communication interface, as is illustrated in Figure 3. As a result, only six wires are required for power distribution and data communication.2.1 Mechanical designThe goal of the RMMS projec
23、t is to have a wide variety of hardware modules available. So far, we have built four kinds of modules: the manipulator base, a link module, three pivot joint modules (one of which is shown in Figure 2), and one rotate joint module. The base module and the link module have no degrees-of-freedom; the
24、 joint modules have one degree-of-freedom each. The mechanical design of the joint modules compactly fits a DC-motor, a fail-safe brake, a tachometer, a harmonic drive and a resolver.The pivot and rotate joint modules use different outside housings to provide the right-angle or in-line configuration
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 外文 文献 翻译 25
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内