《高三物理电磁感应综合(共8页).doc》由会员分享,可在线阅读,更多相关《高三物理电磁感应综合(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上电磁感应综合图4-11、如图4-1所示为矩形的水平光滑导电轨道abcd,ab边和cd边的电阻均为5R0,ad边和bc边长均为L,ad边电阻为4R0,bc边电阻为2R0,整个轨道处于与轨道平面垂直的匀强磁场中,磁感强度为B。轨道上放有一根电阻为R0的金属杆mn,现让金属杆mn在平行轨道平面的未知拉力F作用下,从轨道右端以速率V匀速向左端滑动,设滑动中金属杆mn始终与ab、cd两边垂直,且与轨道接触良好。ab和cd边电阻分布均匀,求滑动中拉力F的最小牵引功率。分析与解:mn金属杆从右端向左端匀速滑动切割磁感线产生感应电动势,mn相当于电源,其电路为内电路,电阻为内电阻。当
2、外电阻最大时,即当mn滑到距离ad=(2/5)ab时,此时电阻Rmadn=Rmbcn=8R0时,外阻最大值Rmax=4R0,这时电路中电流最小值:Imin=/(Rmax+r)=BLV/(4R0+R0)=BLV/5R0所以,Pmin=FminV=BLIminV=BLVBLV/5R0=B2L2V2/5R0图6-12、如图6-1所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求:(1)ab、cd棒的最终速度,(2)全过程中感应电流产生的焦耳
3、热。图6-1分析与解:ab下滑进入磁场后切割磁感线,在abcd电路中产生感应电流,ab、cd各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,ab、cd不再受磁场力作用,各自以不同的速度匀速滑动。全过程中系统内机械能转化为电能再转化为内能,总能量守恒。(1) ab自由下滑,机械能守恒:mgh=(1/2)mV2 1由于ab、cd串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 Lab=3Lcd,故它们的磁场力为:Fab=3Fcd 2在磁场力作用下,ab、cd各作变速运动,产生的感应电动势方向相反,当ab=cd时,电路中感应电流为零,(I=0),安
4、培力为零,ab、cd运动趋于稳定,此时有:BLabVab=BLcdVcd 所以Vab=Vcd/3 3ab、cd受磁场力作用,动量均发生变化,由动量定理得:Fabt=m(V-Vab) 4 Fcdt=mVcd 5联立以上各式解得:Vab=(1/10),Vcd=(3/10)(2)根据系统能量守恒可得:Q=E机=mgh-(1/2)m(Vab2+Vcd2)=(9/10)mgh图11-13、如图11-1所示,两根互相平行、间距d=0.4米的金属导轨,水平放置于匀强磁场中,磁感应强度B=0.2T,磁场垂直于导轨平面,金属滑杆ab、cd所受摩擦力均为f=0.2N。两根杆电阻均为r=0.1,导轨电阻不计,当ab
5、杆受力F=0.4N的恒力作用时,ab杆以V1做匀速直线运动,cd杆以V2做匀速直线运动,求速度差(V1 V2)等于多少?分析与解:在电磁感应现象中,若回中的感应电动势是由导体做切割磁感线运动而产生的,则通常用=BlVsin来求较方便,但有时回路中的电动势是由几根棒同时做切割磁感线运动产生的,如果先求出每根导体棒各自的电动势,再求回路的总电动势,有时就会涉及“反电动势”而超纲。如果取整个回路为研究对象,直接将法拉第电磁感应定律=用于整个回路上,即可“一次性”求得回路的总电动势,避开超纲总而化纲外为纲内。cd棒匀速向右运动时,所受摩擦力f方向水平向左,则安培力Fcd方向水平向右,由左手定则可得电流
6、方向从c到d,且有:Fcd = IdB = f I = f /Bd取整个回路abcd为研究对象,设回路的总电势为,由法拉第电磁感应定律=,根据B不变,则=BS,在t时间内,=B(V1V2)td所以:=B(V1V2)td/t=B(V1V2)d 又根据闭合电路欧母定律有:I=/2r 由式得:V1V2 = 2fr / B2d2代入数据解得:V1V2 =6.25(m/s)图12-14、如图12-1所示,线圈每边长0.20,线圈质量10.10、电阻0.10,砝码质量20.14线圈上方的匀强磁场磁感强度0.5,方向垂直线圈平面向里,磁场区域的宽度为0.20砝码从某一位置下降,使边进入磁场开始做匀速运动求线
7、圈做匀速运动的速度解析:该题的研究对象为线圈,线圈在匀速上升时受到的安培力安、绳子的拉力和重力1相互平衡,即安1砝码受力也平衡:2线圈匀速上升,在线圈中产生的感应电流,因此线圈受到向下的安培力安联解式得(21)22代入数据解得:4()5、如图所示,光滑的平行水平金属导轨MN、PQ相距l,在M点和P点间连接一个阻值为R的电阻,在两导轨间cdfe矩形区域内有垂直导轨平面竖直向上、宽为d的匀强磁场,磁感应强度为B。一质量为m、电阻为r、长度也刚好为l的导体棒ab垂直搁在导轨上,与磁场左边界相距d0。现用一个水平向右的力F拉棒ab,使它由静止开始运动,棒ab离开磁场前已做匀速直线运动,棒ab与导轨始终
8、保持良好接触,导轨电阻不计,F随ab与初始位置的距离x变化的情况如图,F0已知。求:(1)棒ab离开磁场右边界时的速度(2)棒ab通过磁场区域的过程中整个回路所消耗的电能(3)d0满足什么条件时,棒ab进入磁场后一直做匀速运动RMNPQabcdefd0dBFOxFOxF02F0d0d0+d(1)设离开右边界时棒ab速度为,则有 1分 1分 对棒有: 2分 解得: 2分(2)在ab棒运动的整个过程中,根据动能定理: 2分 由功能关系: 2分 解得: 2分(3)设棒刚进入磁场时的速度为,则有 2分 当,即时,进入磁场后一直匀速运动;6、(2007年广东卷)如图15(a)所示,一端封闭的两条平行光滑
9、导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图15(b)所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧顶端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。(1)问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?(2)求0到时间t0内,回路中感应电流产生的焦耳热量。(3)探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路
10、中感应电流的大小和方向。解:(1)感应电流的大小和方向均不发生改变。因为金属棒滑到圆弧任意位置时,回路中磁通量的变化率相同。 (2)0t0时间内,设回路中感应电动势大小为E0,感应电流为I,感应电流产生的焦耳热为Q,由法拉第电磁感应定律: 根据闭合电路的欧姆定律: 由焦定律及有: (3)设金属进入磁场B0一瞬间的速度变v,金属棒在圆弧区域下滑的过程中,机械能守恒: 在很短的时间内,根据法拉第电磁感应定律,金属棒进入磁场B0区域瞬间的感应电动势为E,则: 由闭合电路欧姆定律及,求得感应电流: 根据讨论:I.当时,I=0;II.当时,方向为;III.当时,方向为。7、(2006年广东卷)如图11所
11、示,在磁感应强度大小为B、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m的匀质金属杆A1和A2,开始时两根金属杆位于同一竖直面内且杆与轨道垂直。设两导轨面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆单位长度的电阻为r。现有一质量为的不带电小球以水平向右的速度撞击杆A1的中点,撞击后小球反弹落到下层面上的C点。C点与杆A2初始位置相距为S。求:(1)回路内感应电流的最大值;(2)整个运动过程中感应电流最多产生了多少热量;(3)当杆A2与杆A1的速度比为1:3时,A2受到的安培力大小。解:(1) t1/2 vqS/tS1/2
12、 v11/2EBL v1 IME/2Lrv0+S1/2(2)两杆最终速度相同由动量守恒定律:v共v1 Qmv12mv12mv12mv0+S1/22(3)m v1m v2/+3 m v2/; v2/v1; v1/v1。E/BL v1I/E/2Lrv0+S1/2 F2I/LBv0+S1/28、(2004年广东卷)如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为 ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为 和 ,两杆与导轨接触良好,与导轨间的动摩擦因数为 ,已知:杆1被外力拖动,以恒定的速度 沿导轨运动;
13、达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。9、(2004年全国卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感强度B的匀强磁场中,磁场方向垂直导轨所在平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1、m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用与金属杆x1y1上竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两
14、杆的重力的功率的大小和回路电阻上的热功率。P R(m1m2)g Q2RPQ10、(2003年广东卷)如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s。一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力。用a表示金属杆的加速度,在t时刻,
15、金属杆与初始位置的距离L= at2,此时杆的速度v=at,这时,杆与导轨构成的回路的面积S=Ll,回路中的感应电动势,回路总电阻R=2Lr0,回路感应电流I=E/R,作用于杆的作用力F=Bli,解得,带入数据得F=1.4410-3N yxR1R2AoCv10、(2003年上海卷)如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中用粗线表示),R1=4、R2=8(导轨其它部分电阻不计)。导轨OAC的形状满足 (单位:m)。磁感应强度B=0.2T的匀强磁场方向垂直于导轨平面。一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻。求:外力F的最大值;金属棒在导轨上运动时电阻丝R1上消耗的最大功率;在滑动过程中通过金属棒的电流I与时间t的关系。金属棒匀速运动,F外=F安,E=BLv,I=E/R总,F外=BIL=B2L2v/R总,Lmax=2sin90=2m,R总=8/3,故Fmax=0.3N P1=E2/R1=1W金属棒与导轨接触点间的长度随时间变化,且x=vt,E=BLv,故 专心-专注-专业
限制150内