统计学答案(共62页).doc
《统计学答案(共62页).doc》由会员分享,可在线阅读,更多相关《统计学答案(共62页).doc(62页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上43 某银行为缩短顾客到银行办理业务等待的时间。准备采用两种排队方式进行试验:一种是所有颐客都进入一个等待队列:另种是顾客在三千业务窗口处列队3排等待。为比较哪种排队方式使顾客等待的时间更短两种排队方式各随机抽取9名顾客。得到第一种排队方式的平均等待时间为72分钟,标准差为197分钟。第二种排队方式的等待时间(单位:分钟)如下:55 66 67 68 71 73 74 78 78要求:(1)画出第二种排队方式等待时间的茎叶图。 第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf Plot Frequency Stem & Leaf 1.00 Extre
2、mes (=5.5) 3.00 6 . 678 3.00 7 . 134 2.00 7 . 88 Stem width: 1.00 Each leaf: 1 case(s)(2)计算第二种排队时间的平均数和标准差。 Mean7Std. Deviation0.Variance0.51(3)比较两种排队方式等待时间的离散程度。第二种排队方式的离散程度小。(4)如果让你选择一种排队方式,你会选择哪种?试说明理由。 选择第二种,均值小,离散程度小。44 某百货公司6月份各天的销售额数据如下:单位:万元257276297252238310240236265278271292261281301274267
3、280291258272284268303273263322249269295(1)计算该百货公司日销售额的平均数和中位数。(2)按定义公式计算四分位数。 (3)计算日销售额的标准差。Statistics百货公司每天的销售额(万元) NValid30Missing0Mean274.1000Median272.5000Std. Deviation21.17472Percentiles25260.250050272.500075291.250045 甲乙两个企业生产三种产品的单位成本和总成本资料如下:产品单位成本总成本(元)名称(元)甲企业乙企业ABC1520302 1003 0001 5003
4、2551 5001 500要求:比较两个企业的总平均成本,哪个高,并分析其原因。产品名称单位成本(元)甲企业乙企业总成本(元)产品数总成本(元)产品数A1521001403255217B203000150150075C30150050150050平均成本(元)19.18. 调和平均数计算,得到甲的平均成本为19.41;乙的平均成本为18.29。甲的中间成本的产品多,乙的低成本的产品多。46 在某地区抽取120家企业,按利润额进行分组,结果如下:按利润额分组(万元)企业数(个)200300300400400500500600600以上1930421811合 计120要求:(1)计算120家企业利
5、润额的平均数和标准差。(2)计算分布的偏态系数和峰态系数。解:Statistics企业利润组中值Mi(万元) NValid120Missing0Mean426.6667Std. Deviation116.48445Skewness0.208Std. Error of Skewness0.221Kurtosis-0.625Std. Error of Kurtosis0.43847 为研究少年儿童的成长发育状况,某研究所的一位调查人员在某城市抽取100名717岁的少年儿童作为样本,另一位调查人员则抽取了1 000名717岁的少年儿童作为样本。请回答下面的问题,并解释其原因。(1)两位调查人员所得到
6、的样本的平均身高是否相同?如果不同,哪组样本的平均身高较大?(2)两位调查人员所得到的样本的标准差是否相同?如果不同,哪组样本的标准差较大?(3)两位调查人员得到这l 100名少年儿童身高的最高者或最低者的机会是否相同?如果不同,哪位调查研究人员的机会较大?解:(1)不一定相同,无法判断哪一个更高,但可以判断,样本量大的更接近于总体平均身高。(2)不一定相同,样本量少的标准差大的可能性大。(3)机会不相同,样本量大的得到最高者和最低者的身高的机会大。48 一项关于大学生体重状况的研究发现男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。请回答下面的问题:(1)
7、是男生的体重差异大还是女生的体重差异大?为什么? 女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。(2)以磅为单位(1ks22lb),求体重的平均数和标准差。 都是各乘以2.21,男生的平均体重为60kg2.21=132.6磅,标准差为5kg2.21=11.05磅;女生的平均体重为50kg2.21=110.5磅,标准差为5kg2.21=11.05磅。(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间? 计算标准分数: Z1=-1;Z2=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。(4)粗略地估计一下,女生中有百分之几
8、的人体重在40kg60kg之间? 计算标准分数: Z1=-2;Z2=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。49 一家公司在招收职员时,首先要通过两项能力测试。在A项测试中,其平均分数是100分,标准差是15分;在B项测试中,其平均分数是400分,标准差是50分。一位应试者在A项测试中得了115分,在B项测试中得了425分。与平均分数相比,该应试者哪一项测试更为理想?解:应用标准分数来考虑问题,该应试者标准分数高的测试理想。ZA=1;ZB=0.5因此,A项测试结果理想。410 一条产品生产线平均每天的产量为3 700件,标准差为50件。如果某一天的产量低于或高于平均
9、产量,并落人士2个标准差的范围之外,就认为该生产线“失去控制”。下面是一周各天的产量,该生产线哪几天失去了控制?时间周一 周二 周三 周四 周五 周六 周日产量(件)3 850 3 670 3 690 3 720 3 610 3 590 3 700 时间周一周二周三周四周五周六周日产量(件)3850367036903720361035903700日平均产量3700日产量标准差50标准分数Z3-0.6-0.20.4-1.8-2.20标准分数界限-2-2-2-2-2-2-22222222 周六超出界限,失去控制。411 对10名成年人和10名幼儿的身高进行抽样调查,结果如下:成年组166 169
10、l72 177 180 170 172 174 168 173幼儿组68 69 68 70 7l 73 72 73 74 75(1)如果比较成年组和幼儿组的身高差异,你会采用什么样的统计量?为什么?均值不相等,用离散系数衡量身高差异。 (2)比较分析哪一组的身高差异大?成年组幼儿组平均172.1平均71.3标准差4.标准差2.离散系数0.离散系数0. 幼儿组的身高差异大。412 一种产品需要人工组装,现有三种可供选择的组装方法。为检验哪种方法更好,随机抽取15个工人,让他们分别用三种方法组装。下面是15个工人分别用三种方法在相同的时间内组装的产品数量: 单位:个方法A方法B方法C1641671
11、6816517016516416816416216316616716616512913012913013130129127128128127128128125132125126126127126128127126127127125126116126125(1)你准备采用什么方法来评价组装方法的优劣?(2)如果让你选择一种方法,你会作出怎样的选择?试说明理由。解:对比均值和离散系数的方法,选择均值大,离散程度小的。方法A方法B方法C平均165.6平均128.平均125.标准差2.标准差1.标准差2. 离散系数: VA=0.,VB= 0.,VC= 0.均值A方法最大,同时A的离散系数也最小,因此选
12、择A方法。6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。试确定样本均值偏离总体均值不超过0.3盎司的概率。解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=,因此,样本均值不超过总体均值的概率P为:=2-1,查标准正态分布表得=0.8159因此,=0.63186.3 ,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,Zn是来
13、自总体N(0,1)的样本,则统计量服从自由度为n的2分布,记为2 2(n)因此,令,则,那么由概率,可知:b=,查概率表得:b=12.596.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得 解:更加样本方差的抽样分布知识可知,样本统计量: 此处,n=10,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3.325,=19.919,则=0.369,=1.88第四章 抽
14、样分布与参数估计7.2 某快餐店想要估计每位顾客午餐的平均花费金额。在为期3周的时间里选取49名顾客组成了一个简单随机样本。(1)假定总体标准差为15元,求样本均值的抽样标准误差。=2.143(2)在95的置信水平下,求边际误差。 ,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t= 因此,=1.962.143=4.2(3)如果样本均值为120元,求总体均值 的95的置信区间。 置信区间为: =(115.8,124.2)7.4 从总体中抽取一个n=100的简单随机样本,得到=81,s=12。大样本,样本均值服从正态分布:或置信区间为:,=1.2(1)构建的90的置信区间。=1.645,
15、置信区间为:=(79.03,82.97)(2)构建的95的置信区间。=1.96,置信区间为:=(78.65,83.35)(3)构建的99的置信区间。=2.576,置信区间为:=(77.91,84.09)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区
16、间,置信水平分别为90,95和99解:(1)样本均值=3.32,样本标准差s=1.61;(2)抽样平均误差: 重复抽样:=1.61/6=0.268 不重复抽样:=0.268=0.2680.998=0.267(3)置信水平下的概率度: =0.9,t=1.645 =0.95,t=1.96 =0.99,t=2.576(4)边际误差(极限误差): =0.9,=重复抽样:=1.6450.268=0.441不重复抽样:=1.6450.267=0.439 =0.95,=重复抽样:=1.960.268=0.525不重复抽样:=1.960.267=0.523 =0.99,=重复抽样:=2.5760.268=0.
17、69不重复抽样:=2.5760.267=0.688(5)置信区间: =0.9, 重复抽样:=(2.88,3.76)不重复抽样:=(2.88,3.76)=0.95, 重复抽样:=(2.79,3.85)不重复抽样:=(2.80,3.84)=0.99, 重复抽样:=(2.63,4.01)不重复抽样:=(2.63,4.01)7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95的置信区间。解:小
18、样本,总体方差未知,用t统计量均值=9.375,样本标准差s=4.11置信区间:=0.95,n=16,=2.13=(7.18,11.57)711 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g。现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,得每包重量每包重量(g)包数969898100100102102104104106233474合计50 已知食品包重量服从正态分布,要求 (1)确定该种食品平均重量的95的置信区间。 解:大样本,总体方差未知,用z统计量样本均值=101.4,样本标准差s=1.829置信区间:=0.95,=1.96=(100.89,101.91)(
19、2)如果规定食品重量低于l00g属于不合格,确定该批食品合格率的95的置信区间。解:总体比率的估计大样本,总体方差未知,用z统计量样本比率=(50-5)/50=0.9置信区间:=0.95,=1.96=(0.8168,0.9832)713 一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18个员工。得到他们每周加班的时间数据如下(单位:小时):63218171220117902182516152916假定员工每周加班的时间服从正态分布。估计网络公司员工平均每周加班时间的90%的置信区间。解:小样本,总体方差未知,用t统计量均值=13.56,样本标准差s=7.801置信区间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 答案 62
限制150内