《角平分线的四大模型(共6页).docx》由会员分享,可在线阅读,更多相关《角平分线的四大模型(共6页).docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是MON的平分线上一点,过点P作PAOM于点A,PBON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。例1:(1)如图,在ABC,C=90,AD平分CAB,BC=6cm,BD=4cm,那么点D到AB的距离是_cm(2)如图,已知1=2,3=4,求证:AP平分BAC.练习1 如图,在四边形ABCD中,BCBA,AD=DC,BD平分ABC.求证:BAD+C=180练习2 如图,ABC的外角AC
2、D的平分线CP与内角ABC的平分线BP交于点P,若BPC=40,则CAP=()A. 40 B. 45 C. 50 D. 60模型二:截取构造对称全等如图,P是MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则OPBOPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。例2:(1)如图所示,在ABC中,AD是BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由 (2)如图所示AD是ABC的内角平分线,其他条件不
3、变,试比较PC -PB与AC-AB的大小,并说明理由练习 3 已知:ABC中,A=2B,CD是ACB的平分线,AC=16,AD=8,求线段BC的长。练习4 已知,如图AB=AC,A=108,BD平分ABC交AC于D,求证:BC=AB+CD.练习5 如图,在ABC中,A=100,ABC=40,BD是ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是MON的平分线上一点,APOP于P点,延长AP交ON于点B,则AOB是等腰三角形。模型分析:构造次模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应
4、角相等。这个模型敲门地把角平分线和三线合一联系在一起。例3:如图所示,已知等腰直角三角形ABC中,A=90,AB =AC,BD平分ABC,CEBD,垂足为点E,求证:BD=2CE练习6 如图,在ABC中,BE是ABC的角平分线,ADBE,垂足为D,求证:2=1+C。练习7 如图,在ABC中,ABC=3C,AD平分BAC,BEAD于E,求证:BE=12(ACAB).模型四:角平分线+平行线如图,P是MON的平分线上一点,过点P作PA/ON,交OM于点Q.则POQ是等腰三角形.模型分析:有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等
5、腰三角形之间的密切关系。例4:阅读并完成以下问题:已知,ABC中,ABC、ACB的平分线相交于点O,过点O作EFBC交AB、AC于点E. F. 当AB=AC,易证BEO与CFO为等腰三角形,则有EF=BE+CF.(如图1)当ABAC,其他条件不变,如图(2),则EF=BE+CF还成立吗?答:_.当ABAC时,作ABC的平分线与ACB的外角ACD的平分线CO交于O,过O点作OEBC交AB于E,交AC于F. 如图(3),这时EF与BE、CF间的关系又如何呢?请写出并证明你的结论?当ABAC时,作ABC的外角平分线与ACB的外角平分线或延长线交于O,过O点作BC的平行线,交AB延长线于E,交AC的延长线于F. 请根据以上的要求画出图形,并直接写出这时EF与BE、CF间的关系?练习8 如图,在ABC中,ABC和ACB的平分线相交于点E,过点E作MNBC交AB于点M,交AC于点N.若BM+CN=9,则线段MN的长是.练习9 如图,在ABC,AD平分BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EFAB.练习10 如图,梯形ABCD中,ADBC,E是CD的中点,AE平分BAD,AEBE.(1)求证:BE平分ABC;(2)求证:AD+BC=AB;(3)若SABE=4,求梯形ABCD的面积。专心-专注-专业
限制150内