运筹学试题库(共22页).doc
《运筹学试题库(共22页).doc》由会员分享,可在线阅读,更多相关《运筹学试题库(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上运筹学试题库一、多项选择题1、下面命题正确的是( )。 A、线性规划的标准型右端项非零; B、线性规划的标准型目标求最大; C、线性规划的标准型有等式或不等式约束; D、线性规划的标准型变量均非负。2、下面命题不正确的是( )。 A、线性规划的最优解是基本解; B、基本可行解一定是基本解; C、线性规划有可行解则有最优解; D、线性规划的最优值至多有一个。3、设线性规划问题(P),它的对偶问题(D),那么( )。 A、若(P)求最大则(D)求最小;B、(P)、(D)均有可行解则都有最优解; C、若(P)的约束均为等式,则(D)的所有变量均无非负限制; D、(P)和(D
2、)互为对偶。4、课程中讨论的运输问题有基本特点( )。 A、产销平衡; B、一定是物品运输的问题; C、是整数规划问题; D、总是求目标极小。5、线性规划的标准型有特点( )。 A、右端项非零; B、目标求最大; C、有等式或不等式约束; D、变量均非负。6、下面命题不正确的是( )。 A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。7、线性规划模型有特点( )。 A、所有函数都是线性函数; B、目标求最大; C、有等式或不等式约束; D、变量非负。8、下面命题正确的是( )。 A、线性规划的最优解是基本可行解;B、基
3、本可行解一定是最优; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。9、一个线性规划问题(P)与它的对偶问题(D)有关系( )。 A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解; C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。10、运输问题的基本可行解有特点( )。 A、有mn1个基变量; B、有m+n个位势; C、产销平衡; D、不含闭回路。二、简答题(1)微分学求极值的方法为什么不适用于线性规划的求解?(2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式?(3)图解法主要步骤是什么?从中可以看出线性规划最
4、优解有那些特点?(4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用?(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数?(6)确定换出变量的法则是什么?违背这一法则,会发生什么问题?(7)如何进行换基迭代运算?(8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别?(9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。(10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么?(11)如何在以B为基的单纯形表中,找出B1?该表是怎样由初始表得到的?(12)对偶问题的构成要素之间,
5、有哪些对应规律?(13)如何从原问题最优表中,直接找到对偶最优解?(14)叙述互补松弛定理及其经济意义。(15)什么是资源的影子价格?它在经济管理中有什么作用?(16)对偶单纯形法有哪些操作要点?它与单纯形法有哪些相同,哪些地方有区别?(17)灵敏度分析主要讨论什么问题?分析的基本思路是什么?四种基本情况的分析要点是什么?三、模型建立题(1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表3-1所示:表3-1产品ABC资源数量原料单耗机时单耗22.5335620002600利润101420另外,要求三种产品总产量不低于65件,A的产量不高于B的产量。试制定使总利润最大的模型。(2)
6、某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻井费用最小。若10个井位的代号为,相应的钻井费用为,并且井位选择上要满足下列限制条件:或选择和,或选择钻探;选择了或就不能选,或反过来也一样;在中最多只能选两个;试建立这个问题的整数规划模型。(3)某市为方便学生上学,拟在新建的居民小区增设若干所小学。已知备选校址代号及其能覆盖的居民小区编号如表32所示,问为覆盖所有小区至少应建多少所小学,要求建模并求解。表32备选校址代号覆盖的居民小区编号A1,5,7B1,2,5C1,3,5D2,4,5E3,6,F4,6,(4)一货船,有效载重量为24吨,可运输货物重量及运费收入如表3-3所示,
7、现货物2、4中优先运2,货物1、5不能混装,试建立运费收入最多的运输方案。表3-3货物123456重量(吨)59871023收入(万元)144357(5) 运筹学中著名的旅行商贩(货朗担)问题可以叙述如下:某旅行商贩从某一城市出发,到其他几个城市推销商品,规定每个城市均需到达且只到达一次,然后回到原出发城市。已知城市i和城市j之间的距离为dij问商贩应选择一条什么样的路线顺序旅行,使总的旅程最短。试对此问题建立整数规划模型。四、计算及分析应用题(1)某公司打算利用具有下列成分(见表4-1)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。表4-1合金品种12345含铅%含
8、锌%含锡%306010102070502030101080501040单价(元/kg)8.56.08.95.78.8如何安排配方,使成本最低?(2)某医院每天各时间段至少需要配备护理人员数量见表4-2表4-2班次时间最少人数1234566:0010:0010:0014:0014:0018:0018:0022:0022:002:002:006:00607060502030假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解?(3)某工地需要30套三角架,其结构尺寸如图4-1所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少?331.41
9、.41.7图4-1(4)用图解法求下列线性规划的最优解: (5) 把下列线性规划化为标准形式:(6) 求出下列线性规划的所有基本解,并指出其中的基可行解和最优解。(7) 求下列线性规划的解:(1)(2)(3)(4)(8) 利用大M法或两阶段法求解下列线性规划:(1)(2)(3)(4)(9) 对于问题(1)设最优解为X*,当C改为时,最优解为,则。(2)如果X1,X2均为最优解,则对于0,1,X1+(1)X2均为最优解。(10). 表4-2是一个求极大值线性规划的单纯形表,其中x4,x5,x6是松弛变量。表4-2cj22CBXBbx1x2x3x4x5x62x5x2x12141-12a21-1-1
10、-2-a+8j-1(1)把表中缺少的项目填上适当的数或式子。(2)要使上表成为最优表,a应满足什么条件?(3)何时有无穷多最优解?(4)何时无最优解?(5)何时应以x3替换x1? (11) 已知某线性规划的初始单纯形表和最终单纯形表如表4-3,请把表中空白处的数字填上,并指出最优基B及B1。表4-3cj2-11000CBXBbx1x2x3x4x5x6000x4x5x63111-1112-1100010001j2-1100002-1x4x1x210155-11/2-1/2-21/21/2j(12). 某个线性规划的最终表是表4-4表4-4cj01-200CBXBbx1x2x3x4x501-2x1
11、x2x313/25/21/2100010001-1/2-1/2-1/25/23/21/2j000-1/2-1/2初始基变量是x1,x4,x5。(1)求最优基B=(P1,P2,P3);(2)求初始表。(13). 写出下列线性规划的对偶问题:(14) 已知线性规划(1)写出它的对偶问题;(2)引入松弛变量,化为标准形式,再写出对偶问题;(3)引入人工变量,把问题化为等价模型:再写出它的对偶问题。试说明上面三个对偶问题是完全一致的。由此,可以得出什么样的一般结论?(15) 利用对偶理论说明下列线性规划无最优解:(16). 已知表4-5是某线性规划的最优表,其中x4,x5为松弛变量,两个约束条件为型。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 试题库 22
限制150内