《高中数学正弦定理和余弦定理(共7页).doc》由会员分享,可在线阅读,更多相关《高中数学正弦定理和余弦定理(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第6讲正弦定理和余弦定理一、选择题1.(2016哈尔滨模拟)在ABC中,AB,AC1,B30,ABC的面积为,则C()A.30 B.45 C.60 D.75解析法一SABCABACsin A,即1sin A,sin A1,由A(0,180),A90,C60.故选C.法二由正弦定理,得,即,sin C,又C(0,180),C60或C120.当C120时,A30,SABC(舍去).而当C60时,A90,SABC,符合条件,故C60.故选C.答案C2.在ABC中,角A,B,C对应的边分别为a,b,c,若A,a2,b,则B等于()A. B. C.或 D.解析A,a2,b,由正
2、弦定理可得,sin Bsin A.A,B.答案D3.(2017成都诊断)在ABC中,cos2(a,b,c分别为角A,B,C的对边),则ABC的形状为()A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析因为cos2,所以2cos211,所以cos B,所以,所以c2a2b2.所以ABC为直角三角形.答案B4.ABC的内角A,B,C的对边分别为a,b,c,则“ab”是“cos 2Acos 2B”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析因为在ABC中,absin Asin Bsin2Asin2B2sin2A2sin2B12
3、sin2A12sin2Bcos 2Acos 2B.所以“ab”是“cos 2Acos 2B”的充分必要条件.答案C5.(2016山东卷)在ABC中,角A,B,C的对边分别是a,b,c,已知bc,a22b2(1sin A),则A()A. B. C. D.解析在ABC中,由bc,得cos A,又a22b2(1sin A),所以cos Asin A,即tan A1,又知A(0,),所以A,故选C.答案C二、填空题6.(2015重庆卷)设ABC的内角A,B,C的对边分别为a,b,c,且a2,cos C,3sin A2sin B,则c_.解析由3sin A2sin B及正弦定理,得3a2b,又a2,所以
4、b3,故c2a2b22abcos C4922316,所以c4.答案47.(2017江西九校联考)在ABC中,角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,且a1,b,则SABC_.解析因为角A,B,C依次成等差数列,所以B60.由正弦定理,得,解得sin A,因为0A180,所以A30或150(舍去),此时C90,所以SABCab.答案8.(2016北京卷)在ABC中,A,ac,则_.解析在ABC中,a2b2c22bccos A,将A,ac代入,可得(c)2b2c22bc,整理得2c2b2bc.c0,等式两边同时除以c2,得2,可解得1.答案1三、解答题9.(2015天津
5、卷)在ABC中,内角A,B,C所对的边分别为a,b,c.已知ABC的面积为3,bc2,cos A.(1)求a和sin C的值;(2)求cos的值.解(1)在ABC中,由cos A,可得sin A.由SABCbcsin A3,得bc24,又由bc2,解得b6,c4.由a2b2c22bccos A,可得a8.由,得sin C.(2)coscos 2Acos sin 2Asin(2cos2A1)2sin Acos A.10.(2015全国卷)在ABC中,D是BC上的点,AD平分BAC,BD2DC.(1)求;(2)若BAC60,求B.解(1)由正弦定理得,.因为AD平分BAC,BD2DC,所以.(2)
6、因为C180(BACB),BAC60,所以sin Csin(BACB)cos Bsin B.由(1)知2sin Bsin C,所以tan B,即B30.11.(2017广州调研)已知锐角三角形的边长分别为1,3,x,则x的取值范围是()A.(8,10) B.(2,)C.(2,10) D.(,8)解析因为31,所以只需使边长为3及x的对角都为锐角即可,故即8x20,所以2x.答案B12.在ABC中,三个内角A,B,C所对的边分别为a,b,c,若SABC2,ab6,2cos C,则c()A.2 B.4 C.2 D.3解析2cos C,由正弦定理,得sin Acos Bcos Asin B2sin
7、Ccos C,sin(AB)sin C2sin Ccos C,由于0C,sin C0,cos C,C.SABC2absin Cab,ab8,又ab6,或c2a2b22abcos C416812,c2,故选C.答案C13.(2015全国卷)在平面四边形ABCD中,ABC75,BC2,则AB的取值范围是_.解析如图所示,延长BA与CD相交于点E,过点C作CFAD交AB于点F,则BFABBE.在等腰三角形CBF中,FCB30,CFBC2,BF.在等腰三角形ECB中,CEB30,ECB75,BECE,BC2,BE.AB.答案(,)14.设f(x)sin xcos xcos2.(1)求f(x)的单调区间;(2)在锐角ABC中,角A,B,C的对边分别为a,b,c.若f0,a1,求ABC面积的最大值.解(1)由题意知f(x)sin 2x.由2k2x2k,kZ, 可得kxk,kZ;由2k2x2k,kZ,可得kxk,kZ.所以f(x)的单调递增区间是(kZ);单调递减区间是(kZ).(2)由f sin A0,得sin A,由题意知A为锐角,所以cos A.由余弦定理a2b2c22bccos A,可得1bcb2c22bc,即bc2,且当bc时等号成立.因此bcsin A.所以ABC面积的最大值为.专心-专注-专业
限制150内