顾沛漫谈数学文化(共5页).doc
《顾沛漫谈数学文化(共5页).doc》由会员分享,可在线阅读,更多相关《顾沛漫谈数学文化(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上顾沛:漫谈数学文化 “十三年的数学学习后,那些数学公式、定理、解题方法也许都会被忘记,但是形成的数学素养却终身受用。”由于数学教学方式和内容的局限,尽管一个人经历至少长达13年的数学学习,但对数学的精髓却毫无概念,在宏观上把握数学的能力较差,也就是所谓的数学素养较差。甚至误以为学数学就是为了解题,考试,而不了解数学在实际生产生活中的应用。 谈到数学素养的问题时,顾沛讲到自己已经成功地在南开大学开设了数学文化课程,他说,之所以开设这门课程正是为了克服数学教学中忽视数学文化的这一弊病。 那什么是数学素养呢?通俗地说,数学素养就是把所学的数学知识都排出或忘掉后剩下的东西。
2、“现实生活中,经常会用到一些数学的思维去解决问题。这种解决问题的方法就是数学素养的一种体现。”微软公司招聘员工的一道考题。“一个屋里有50个人,每人带一条狗,其中部分是病狗。主人只能通过对其它狗的观察得知自己的狗是否是病狗,并在发现当天用枪打死自己的狗,第一天没有听到枪声,第二天没有听到枪声直至第十天听到一片枪声,问屋里有多少病狗。”可是这道看似脑筋急转弯的题目其实是一道巧妙的数学应用题。正确的解答需要结合运用反证法和数学归纳法,答案的揭晓使每个人都能感觉到数学的奥妙。下面十个具体形象的例子从不同的角度体现了数学文化和素养的魅力。 例一:芝诺悖论与无限从初等数学到高等数学 很多人都听过芝诺悖论
3、中的“阿基里斯永远追不上乌龟”的问题,顾沛在分析这个问题时,指出这一悖论的症结在于混淆了有限与无限的问题。芝诺认为阿基里斯在追赶乌龟的过程中,首先要到达乌龟原先的位置A,而这时乌龟已经到了位置B,阿基里斯继续追赶则要先到达B,这时乌龟又到达了位置C,以此类推,阿基里斯似乎永远也追不上乌龟了,可是芝诺却忽视了一个问题,无限长度或时间的和,可能是有限的。 另一个与无限有关的是“有无限个房间的旅馆”问题,一个有无限个房间的旅馆客满后来了一个客人,应该怎样安排他?答案很简单,让原先住在1号房的客人搬进2号房,原先住在2号房的客人住进3号房,以此类推,让原先住在K号房的客人住进K+1号房,这样就空出了1
4、号房给新来的客人。同理,来了一个团的无穷个旅客,一万个团的无穷个旅客甚至无穷个团的无穷个旅客也应对自如了。在场的许多同学都有所领悟,给出了精彩的解答。 奇妙的数学,从有限到无限,不可能的也成了可能。 例二:海岸线的长度问题分形与混沌 首先是分形问题。BBMandelbrot发现英国的海岸线永远也无法测量,为什么呢?柯赫曲线的几何现象说明了这个问题。(组图略) 这样的一组图具有自相似性,在测量海岸线时,如果尺子的长度精确度不同,那么海岸线的形状就可以无限分形,当然无法准确测量了。正是这样一个问题,发展成了数学界一个非常重要的分支。 混沌问题。这个问题是ENLorenz在做天气预报中发现的。大家都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 漫谈 数学 文化
限制150内