高考数学压轴难题归纳总结提高培优专题1-2-极值点偏移问题利器--极值点偏移判定定理(共10页).doc
《高考数学压轴难题归纳总结提高培优专题1-2-极值点偏移问题利器--极值点偏移判定定理(共10页).doc》由会员分享,可在线阅读,更多相关《高考数学压轴难题归纳总结提高培优专题1-2-极值点偏移问题利器--极值点偏移判定定理(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、极值点偏移的判定定理对于可导函数,在区间上只有一个极大(小)值点,方程的解分别为,且,(1)若,则,即函数在区间上极(小)大值点右(左)偏;(2)若,则,即函数在区间上极(小)大值点右(左)偏.证明:(1)因为对于可导函数,在区间上只有一个极大(小)值点,则函数的单调递增(减)区间为,单调递减(增)区间为,由于,有,且,又,故,所以,即函数极(小)大值点右(左)偏;(2)证明略.左快右慢(极值点左偏) 左慢右快(极值点右偏)左快右慢(极值点左偏) 左慢右快(极值点右偏)二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数的极值点;(2)构造一元差函数;
2、(3)确定函数的单调性;(4)结合,判断的符号,从而确定、的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点; 假设此处在上单调递减,在上单调递增.KS5UKS5U.KS5U(2)构造; 注:此处根据题意需要还可以构造成的形式.KS5UKS5U(3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,与的大小关系得出结论;接上述情况,由于时,且,故,又因为,且在上单调
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 压轴 难题 归纳 总结 提高 专题 极值 偏移 问题 利器 判定 定理 10
链接地址:https://www.taowenge.com/p-13932445.html
限制150内