《2020年江苏省南京市中考数学试卷(共13页).doc》由会员分享,可在线阅读,更多相关《2020年江苏省南京市中考数学试卷(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上南京市2020年初中学业水平考试数 学第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算的结果是( )A B C D2.的平方根是( )A B C D3.计算的结果是( )A B C D4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是( )A年末,农村费闲人口比上年末减少万人 B年末至年来,农村费人口果计减少超过万人 C年末至年末,连续年每年农村贫用人口减少万人以上 D为在年末农村困
2、人口全部脱,今年要确保完成减少万农村人口的任务5.关于的方程(为常数)根的情况下,下列结论中正确的是( )A两个正根 B两个负根 C一个正根,一个负根 D无实数根6.如图,在平面直角坐标系中,点在第一象限,与轴、轴都相切,且经过矩形的顶点,与相交于点,若的半径为,点的坐标是,则点的坐标是( )A B C D第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.写出一个负数,使这个数的绝对值小于 8.若式子在实数范围内有意义,则的取值范围是 9.纳秒是非常小的时间单位,北斗全球导航系统的授时精度优于,用科学计数法表示是 10.计算的结果是 11.已知、满足方程组,则的值为 1
3、2.方程的解是 13.将一次函数的图象绕原点逆时针旋转,所得到的图像对应的函数表达式是 14.如图,在边长为的正六边形中,点在上,则的面积为 15.如图,线段、的垂直平分线、相交于点,若,则 16.下列关于二次函数(为常数)的结论,该函数的图象与函数的图象形状相同;该函数的图象一定经过点;当时,随的增大而减小;该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 计算:18. 解方程:19. 如图,点在上,点在上,求证:20. 已知
4、反比例函数的图象经过点(1)求的值(2)完成下面的解答解不等式组解:解不等式,得 根据函数的图象,得不等式得解集 把不等式和的解集在数轴上表示出来从中可以找出两个不等式解集的公共部分,得不等式组的解集 21. 为了了解某地居民的用电量情况,随机抽取了该地户居民六月份的用电量(单位:)进行调查,整理样本数据得到下面的频数分布表:组别用电量分组频数根据抽样调查的结果,回答下列问题:(1)该地这户居民六月份的用电量的中位数落在第 组内(2)估计该地万户居民六月份的用电量低于的大约有多少户22.甲、乙两人分别从、这个景点随机选择个景点游览(1)求甲选择的个景点是、的概率(2)甲、乙两人选择的个景点恰好
5、相同的概率是 23.如图,在港口处的正东方向有两个相距的观测点、.一胶轮船从处出发, 北偏东方向航行至处, 在、处分别测得.求轮船航行的距离, (参考数据:,)24.如图,在中,是上一点,经过点、,交于点,过点作,交于点求证:(1)四边形是平行四边形(2)25. 小明和小丽先后从地出发同一直道去地, 设小丽出发第时, 小丽、小明离地的距离分别为、,与之间的数表达式,与之间的函数表达式是。(1)小丽出发时,小明离地的距离为 .(2)小丽发至小明到达地这段时间内,两人何时相距最近?最近距离是多少?26.如图,在和中,、分别是、上一点,。(1)当时,求证:证明的途径可以用下面的框图表示,请填写其中的
6、空格(2)当时,判断与是否相似,并说明理由27.如图,要在一条笔直的路边上建一个燃气站,向同侧的、两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短。(1)如图,作出点关于的对称点,线与直线的交点的位置即为所求, 即在点处建气站, 所得路线是最短的,为了让明点的位置即为所求,不妨在直线上另外任取一点,连接, 证明, 请完成这个证明。(2)如果在、两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),生市保护区是正方形区城,位置如图所示生态保护区是圆形区域,位置如图所示.试卷答案一、选择题1-5: 6:二、填空题7.(
7、答案不唯一) 8.9. 10.11. 12.13. 14. 15. 16.三、解答题17.解:18.解:移项,得配方,得由此可得,19.证明:,即20.解(1)因为点在反比例函数的图像上所以点的坐标满足即,解得(2),21.解(1)(2)因此,估计该地万户居民六月的用电量低于的大约有户22.解(1)甲从、这个景点中随机抽取个景点所有可能出现的结果共有种即、这些结果出现的可能性相等所有的结果中,满足甲选择的个景点是、(记为事件)的结果有种即所以(2)23.解:如图,过点作,垂足为在中,在中,在中,因此,轮船航行的距离约为24.证明:(1)又四边形是平行四边形(2)如图,连接,四边形是的内接四边形25.解(1)(2)设小丽出发第时,两人相距,则即其中因此,当时有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是26.解(1);(2)如图,过点、分别作、交于点,交于点同理:又同理:即又同理:又27.(1)证明:如图,连接点、关于对称,点在上同理(2)解:在点处建燃气站,铺设管道的最短路线是(如图,其中是正方形的地顶点)在点处建燃气站,铺设管道的最短路线是(如图,其中、都与圆相切)专心-专注-专业
限制150内