高考数学之三角函数知识点总结(共17页).doc
《高考数学之三角函数知识点总结(共17页).doc》由会员分享,可在线阅读,更多相关《高考数学之三角函数知识点总结(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2弧度。若圆心角的弧长为L,则其弧度数的绝对值|=,其中r是圆的半径。定义3 三角函数,在直角坐标平面内,把角的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sin=,余弦函数cos=,正切函数
2、tan=,余切函数cot=,定理1 同角三角函数的基本关系式,倒数关系:tan=,商数关系:tan=;乘积关系:tancos=sin,cotsin=cos;平方关系:sin2+cos2=1, tan2+1=sec2, cot2+1=csc2.定理2 诱导公式()sin(+)=-sin, cos(+)=-cos, tan(+)=tan;()sin(-)=-sin, cos(-)=cos, tan(-)=-tan; ()sin(-)=sin, cos(-)=-cos, tan=(-)=-tan; ()sin=cos, cos=sin(奇变偶不变,符号看象限)。定理3 正弦函数的性质,根据图象可得y
3、=sinx(xR)的性质如下。单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2. 奇偶数. 有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时, y取最小值-1。对称性:直线x=k+均为其对称轴,点(k, 0)均为其对称中心,值域为-1,1。这里kZ.定理4 余弦函数的性质,根据图象可得y=cosx(xR)的性质。单调区间:在区间2k, 2k+上单调递减,在区间2k-, 2k上单调递增。最小正周期为2。奇偶性:偶函数。对称性:直线x=k均为其对称轴,点均为其对称中心。有界性:当且仅当x=2k时,y取最大值1;当且仅当x=2k-时,y取最小值-1。值域为-1,1。这里
4、kZ.定理5 正切函数的性质:由图象知奇函数y=tanx(xk+)在开区间(k-, k+)上为增函数, 最小正周期为,值域为(-,+),点(k,0),(k+,0)均为其对称中心。函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴定理6 两角和与差的基本关系式:cos()=coscossinsin,sin()=sincoscossin; tan()=定理7 和差化积与积化和差公式:sin+sin=2sincos,sin
5、-sin=2sincos,cos+cos=2coscos, cos-cos=-2sinsin,sincos=sin(+)+sin(-),cossin=sin(+)-sin(-),coscos=cos(+)+cos(-),sinsin=-cos(+)-cos(-).定理8 倍角公式:sin2=2sincos, cos2=cos2-sin2=2cos2-1=1-2sin2, tan2=定理9 半角公式:sin=,cos=,tan=定理10 万能公式: , ,定理11 辅助角公式:如果a, b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a, b)的一个角为,则sin=,cos=,对任意的
6、角.asin+bcos=sin(+).定理12 正弦定理:在任意ABC中有,其中a, b, c分别是角A,B,C的对边,R为ABC外接圆半径。定理13 余弦定理:在任意ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。定理14 图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+)的图象(相位变换);纵坐标不变,横坐标变为原来的,得到y=sin()的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(0)的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,
7、得到y=Asinx的图象(振幅变换);y=Asin(x+)(, 0)(|A|叫作振幅)的图象向右平移个单位得到y=Asinx的图象。定义4 函数y=sinx的反函数叫反正弦函数,记作y=arcsinx(x-1, 1),函数y=cosx(x0, ) 的反函数叫反余弦函数,记作y=arccosx(x-1, 1). 函数y=tanx的反函数叫反正切函数。记作y=arctanx(x-, +). y=cosx(x0, )的反函数称为反余切函数,记作y=arccotx(x-, +).定理15 三角方程的解集,如果a(-1,1),方程sinx=a的解集是x|x=n+(-1)narcsina, nZ。方程co
8、sx=a的解集是x|x=2kxarccosa, kZ. 如果aR,方程tanx=a的解集是x|x=k+arctana, kZ。恒等式:arcsina+arccosa=;arctana+arccota=.定理16 若,则sinxxtanx.二、方法与例题1结合图象解题。例1 求方程sinx=lg|x|的解的个数。【解】在同一坐标系内画出函数y=sinx与y=lg|x|的图象(见图),由图象可知两者有6个交点,故方程有6个解。1(浙江卷7)在同一平面直角坐标系中,函数的图象和直线的交点个数是(A)0 (B)1 (C)2 (D)42最小正周期的确定。例2 求函数y=sin(2cos|x|)的最小正周
9、期。【解】 首先,T=2是函数的周期(事实上,因为cos(-x)=cosx,所以co|x|=cosx);其次,当且仅当x=k+时,y=0(因为|2cosx|20).由y=sinx的图象向左平移个单位,然后保持横坐标不变,纵坐标变为原来的A倍,然后再保持纵坐标不变,横坐标变为原来的,得到y=Asin(x+)的图象;也可以由y=sinx的图象先保持横坐标不变,纵坐标变为原来的A倍,再保持纵坐标不变,横坐标变为原来的,最后向左平移个单位,得到y=Asin(x+)的图象。 例5 已知f(x)=sin(x+)(0, 0)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值。【解】 由f(x)
10、是偶函数,所以f(-x)=f(x),所以sin(+)=sin(-x+),所以cossinx=0,对任意xR成立。又0,解得=,因为f(x)图象关于对称,所以=0。取x=0,得=0,所以sin所以(kZ),即=(2k+1) (kZ).又0,取k=0时,此时f(x)=sin(2x+)在0,上是减函数;取k=1时,=2,此时f(x)=sin(2x+)在0,上是减函数;取k=2时,此时f(x)=sin(x+)在0,上不是单调函数,综上,=或2。1.(09山东)将函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是 2.(1)(07山东)要得到函数的图象,只需将函数的图象向 平移 个单
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 三角函数 知识点 总结 17
限制150内