中职数学教案(共14页).doc
《中职数学教案(共14页).doc》由会员分享,可在线阅读,更多相关《中职数学教案(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课 题:集合集合的概念(1)教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合课时安排:5课时教学过程: 一、复习引入:1简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2教材中的章头引言;3集合论的创始人康托尔(德国数学家)4“物以类聚”,“人以群分”;5教材中例子 二、讲解新课: 阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些
2、符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+ ,(3)整数集:全体整数的集合记作Z ,
3、 (4)有理数集:全体有理数的集合记作Q , (5)实数集:全体实数的集合记作R, 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作aA(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(
4、通常用正常的顺序写出)5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q“”的开口方向,不能把aA颠倒过来写三、练习题:1、教材P3练习A2、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2_ 四、小结:本节课学习了以下内容:1集合的有关概念:(集合、元素、属于、不属于)2集合元素的性质:确定性,互异性,无序性3常用数集的定义及记法五、课后作业:教材P3练习B课 题:集合集合的概念(2)教学目的:
5、(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义 (3)会运用集合的两种常用表示方法 教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合课时安排:4课时教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)自然数集:全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+ ,(3)整数集:全体整数的集合记作Z , (4)有理数集:全体有理数的集合记作Q , (5)实
6、数集:全体实数的集合记作R,3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作aA(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q(2)“”的开口方向,不能把aA颠倒过来写 二、讲解新课:(一)集合的表示方法1、列举法:把集合中的元素一一列举出来,写
7、在大括号内表示集合例如,由方程的所有解组成的集合,可以表示为-1,1注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:51,52,53,100所有正奇数组成的集合:1,3,5,7,(2)a与a不同:a表示一个元素,a表示一个集合,该集合只有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:xA| P(x) 含义:在集合A中满足条件P(x)的x的集合例如,不等式的解集可以表示为:或 所有直角三角形的集合可以表示为:注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:直角三角形;大于104的实数 (2)错误表示法:实数
8、集;全体实数3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合;集合1000以内的质数例 集合与集合是同一个集合吗?答:不是因为集合是抛物线上所有的点构成的集合,集合= 是函数的所有函数值构成的数集(二) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合记作,如:三、练习题: 1、用描述法表示下列集合1,4,7,10,13 -2,-4
9、,-6,-8,-10 2、用列举法表示下列集合 xN|x是15的约数 1,3,5,15(x,y)|x1,2,y1,2 (1,1),(1,2),(2,1)(2,2)注:防止把(1,2)写成1,2或x=1,y=2四、小结:本节课学习了以下内容:1集合的有关概念:有限集、无限集、空集2集合的表示方法:列举法、描述法、文氏图五、练习与作业:P5-6练习A、B课 题:集合之间的关系(3)教学目的:(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集(,)的概念;教学重点:子集、真子集的概念教学难点:弄清元素与子集、属于与包含的关系课时安排:4课时教学过程: 一、复习引入:(1)回答
10、概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图 (2)用列举法表示下列集合: -1,1,2数字和为5的两位数 14,23,32,41,50(3)用描述法表示集合: (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合” -1,5问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A=1,2,3,B=1,2,3,4,5(2)A=N,B=Q(3)A=-2,4,(集合A中的任何一个元素都是集合B的元素) 二、讲解新课: (一) 子集1 定义:(1)子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,那么集合
11、A就叫做集合B的子集。记作: 读作:A包含于B或B包含A 当集合A不是集合B的子集时,记作: AB或BA注:有两种可能(1)A是B的一部分,;(2)A与B是同一集合(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:AB或BA, 读作A真包含于B或B真包含A(4)子集与真子集符号的方向(5)空集是任何集合的子集A空集是任何非空集合的真子集A 若A,则A任何一个集合是它本身的子集(6)易混符号“”与“”
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教案 14
限制150内