一阶常微分方程的解法(共11页).doc
《一阶常微分方程的解法(共11页).doc》由会员分享,可在线阅读,更多相关《一阶常微分方程的解法(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一阶常微分方程的解法摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equationAbstract: Differential equations, important parts of calculus, are widel
2、y used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly
3、summarizes the elementary solution of first order differential equations, and the typical examples to illustrate.Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method1. 引言一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解
4、法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解.2. 一般变量分离2.1 变量可分离方程形如 (1.1)或 (1.2)的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和微分形式变量可分离方程1.(1) 显式变量可分离方程的解法在方程(1.1)中,若,(1.1)变形为积分得 (1.3)此为(1.1)的解若,使,则也是(1.1)的解注:当不包含于(1.3)时要特别补上解例1:求解方程解:当时,方程的通积分为 ,即 即 .另外,方程还有解,不包含在通解中.(2) 微分形式变量可分离方程的
5、解法方程 (1.2)是变量可分离方程的微分形式表达式.这时,和在方程中的地位是“平等”的,即和都可以被认为是自变量或函数1.在求常数解时,若,则为方程(1.2)的解.同样,若,则也是方程(1.2)的解.当时,用它除方程(1.2)两端,分离变量,得上式两端同时积分,得到方程(1.2)的通积分例2:求解方程解:首先,易见为方程的解.其次,当时,分离变量得积分,得方程的通积分 (C0)或 (C0) 以上内容归纳了变量可分离方程的解法,.有些方程虽然不是变量可分离方程,但是经过变量变换之后,就能化成变量可分离方程,接下来归纳了两类可化为变量可分离的方程及其解法.2.2可化为变量可分离方程(1) 第一类
6、可化为变量可分离的方程:齐次微分方程如果一阶显式方程 (1.4)的右端函数可以改写为的函数,那么称方程(1.4)为一阶齐次微分方程,也可以写为 (1.5)作变量变换 (1.6)于是,从而 (1.7)把(1.6),(1.7)代入(1.5)得 即 (1.8)方程(1.8)是一个变量可分离方程,当时,分离变量并积分,得到它的通积分 (1.9)或即其中. 以代入,得到原方程(1.5)的通积分若存在常数,使,则是(1.8)的解, 由,得是原方程(1.5)的解1例3:解方程解:将方程化为 ,令,代入上式得,即 易于看出,为这个方程的一个解,从而为原方程的一个解.当时,分离变量得两端积分后得或 将换成,并解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一阶 微分方程 解法 11
限制150内