二次函数铅垂高演练(答案、解析、总结)(共10页).doc
《二次函数铅垂高演练(答案、解析、总结)(共10页).doc》由会员分享,可在线阅读,更多相关《二次函数铅垂高演练(答案、解析、总结)(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数铅垂高 如图12-1,过ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ABC的“水平宽”(a),中间的这条直线在ABC内部线段的长度叫ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题: 如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求CAB的铅垂高CD及;图12-2xCOyABD11(3)是否存在一点P,使
2、SPAB=SCAB,若存在,求出P点的坐标;若不存在,请说明理由.例1解:(1)设抛物线的解析式为:1分 把A(3,0)代入解析式求得所以3分设直线AB的解析式为:由求得B点的坐标为 4分把,代入中解得:所以6分(2)因为C点坐标为(,4)所以当x时,y14,y22所以CD4-228分(平方单位)10分(3)假设存在符合条件的点P,设P点的横坐标为x,PAB的铅垂高为h,则12分由SPAB=SCAB得:化简得:解得,将代入中,解得P点坐标为14分总结:求不规则三角形面积时不妨利用铅垂高。铅垂高的表示方法是解决问题的关键,要学会用坐标表示线段。例2(2010广东省中考拟)如图10,在平面直角坐标
3、系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OBOC ,tanACO(1)求这个二次函数的表达式(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度_y_x_O_E_D_C_B_A图10_G_A_B_C_D_O_x_y图11(4)如图11,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点
4、P运动到什么位置时,APG的面积最大?求出此时P点的坐标和APG的最大面积. 1)方法一:由已知得:C(0,3),A(1,0) 将A、B、C三点的坐标代入得 解得: 所以这个二次函数的表达式为: 方法二:由已知得:C(0,3),A(1,0) 设该表达式为: 将C点的坐标代入得: 所以这个二次函数的表达式为: (注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F点的坐标为(2,3) 理由:易得D(1,4),所以直线CD的解析式为:E点的坐标为(3,0) 由A、C、E、F四点的坐标得:AECF2,AECF以A、C、E、F为顶点的四边形为平行四边形存在点F,坐标为(2,3) 方
5、法二:易得D(1,4),所以直线CD的解析式为:E点的坐标为(3,0) 以A、C、E、F为顶点的四边形为平行四边形F点的坐标为(2,3)或(2,3)或(4,3) 代入抛物线的表达式检验,只有(2,3)符合存在点F,坐标为(2,3) (3)如图,当直线MN在x轴上方时,设圆的半径为R(R0),则N(R+1,R),代入抛物线的表达式,解得当直线MN在x轴下方时,设圆的半径为r(r0),则N(r+1,r),代入抛物线的表达式,解得 圆的半径为或 (4)过点P作y轴的平行线与AG交于点Q,易得G(2,3),直线AG为设P(x,),则Q(x,x1),PQ 当时,APG的面积最大此时P点的坐标为,随堂练习
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 铅垂高 演练 答案 解析 总结 10
限制150内