整理一元一次方程应用题(常见类型题)(共15页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《整理一元一次方程应用题(常见类型题)(共15页).doc》由会员分享,可在线阅读,更多相关《整理一元一次方程应用题(常见类型题)(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。【典型例题】例1
2、x的与1的和为8,求x?例2已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。类型二:等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。圆柱体的体积公式:=底面积高=长方体的体积公式:=长宽高=【典型例题】例1.有一根铁丝长20米,用它围成一个长是宽2倍的矩形,求长、宽分别是多少米?例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?类型三:数字问题一般可设个位数字为,十位
3、数字为,百位数字为两位数可表示为: 三位数可表示为:然后抓住数字间或新数、原数之间的关系找等量关系列方程。【典型例题】例1一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型四:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:利润=卖的钱成本 利润=成本X利润率注意打几折
4、是按原价的百分之几出售。一般的相等关系:卖的钱成本=成本X利润率【典型例题】例1.一件商品的售价是30元,、如果卖出后盈利25元,那么这件商品的进价是多少?若卖出后亏损25元,那么进价又是多少? 例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元? 例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折? 例5.某大型服装商场内,一件新款服装的进价是400元。为了吸引顾客,提高销售量,老板向员工征集销售方案,要求保证50%的利润率。员工甲的方案是
5、:把这件服装按进价提高1倍进行标价,然后打出“新款8折优惠”的广告。如果你是这家大商场的老板,你觉得甲的方案符合你的利润要求吗?例6.某文具店有两个进价不同的计算器都卖64元, 其中一个盈利60%,另一个亏本20%,这次交易中的盈亏情况如何?类型五:工程问题工作量工作效率工作时间 合做的效率=各单独做的效率之和 完成某项任务的各工作量之和总工作量1注意:当工作总量未给出具体数量时,常设总工作量为“1”。【典型例题】例1.一项工程,甲单独做要20天完成,乙单独做需要30天完成,若让甲、乙合做需要几天完成?例2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后, 剩下的部分
6、由乙单独做,则乙共需要几天完成?例3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?例4.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?例5.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时再增加 2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作?类型六:行程问题路程速度时间 时间路程速度(1)相向而行,相遇问题:各
7、人路程之和等于总路程或同时走时两人所走的时间相等。快慢原距 (2)同向而行,追及问题:两人的路程之差等于追及的路程或时间为等量关系。 快慢原距 【典型例题】例1.甲、乙两地间路程为120km,一列快车从甲站开出, 每小时行驶60 km,一列慢车从乙站开出,每小时行驶40 km。 (1)两车同时出发,相向而行,多少小时两车相遇(2)快车先开1/3小时,两车相向而行,慢车行驶多少小时两车相遇?(3)两车同时开出,同向而行,快车多少小时可以追上慢车? (4)两车同时开出,同向而行,慢车在前,快车行驶多少 小时与慢车相距20km?(5)两车同时开出,相向而行,快车行驶多少小时与慢车相距20km?类型七
8、:航行问题顺水、逆水,顺风、逆风。顺水速度静水速度水流速度 逆水速度静水速度水流速度 抓住两地间距离不变,水流速和船速不变的特点考虑相等关系。【典型例题】例1.一轮船航行于两个码头之间,逆水需10h,顺水需6h已知该船在静水中中每小时航行12km。求水流速度和两码头之间的距离。例2.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离? 例3一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?类型八:环形跑道这种问题有两种类型:同向和异向当同向出发时,相当于追及问题;当异向出
9、发时,相当于相遇问题 假设甲、乙两人同时从A地出发,同向而行,则快者第一次追上慢者时,快者比慢者多跑一圈路程,即S甲-S乙=1圈长 假设甲、乙两人同时从A地出发,异向而行,则两人第一次相遇时,两人所走路程之和等于一圈长,即S甲+S乙=1圈长【典型例题】例1甲、己两人环湖散步,环湖一周是400m,甲每分钟走80m,乙速是甲速的5/4。(1)甲,乙两人在同地背向而行,多长时间后两人相遇? (2)甲,己两人在同地同向而行,多长时间后两人向遇?例2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,多少分钟后俩人相遇?类型九:过桥山洞【典型例题】例1已知某一
10、铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1 min,整个火车完全在桥上的时间40秒。(1)求火车的速度。(2)求火车的车长类型十:调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。【典型例题】例1有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的一半,应从乙队调多少人到甲队?例2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人 数的一半还多15人,求甲、乙两队原有人数各多少人?例3. 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理 一元一次方程 应用题 常见 类型 15
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内