一元二次方程中考复习(中难题)(共7页).doc
《一元二次方程中考复习(中难题)(共7页).doc》由会员分享,可在线阅读,更多相关《一元二次方程中考复习(中难题)(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二、一元二次方程(一) 课前预习1一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:化二次项系数为1,即方程两边同时除以二次项系数;移项,使方程左边为二次项和一次项,右边为常数项,配方,即方程两边都加上一次项系数一半的平方,化原方程为的形式,如果是非负数,即,就可以用直接
2、开平方求出方程的解.如果n0,则原方程无解.(3)公式法:一元二次方程的求根公式是 (4)因式分解法:因式分解法的一般步骤是:将方程的右边化为 ;将方程的左边化成两个一次因式的乘积;令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。(二) 课题讲解1、基本概念【考点讲解】(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程 (2)一般表达式: (3)难点:如何理解 “未知数的最高次数是2”:该项系数不为“0”;未知数指数为“2”;若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。【典型例题】例1下列方程中是关
3、于x的一元二次方程的是( )A B C D 变式:当k 时,关于x的方程是一元二次方程。例2方程是关于x的一元二次方程,则m的值为 。【针对性练习】1、方程的一次项系数是 ,常数项是 。2、若方程是关于x的一元二次方程,则m的取值范围是 。3、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是( )A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=12、方程的解【考点讲解】概念:使方程两边相等的未知数的值,就是方程的解。应用:利用根的概念求代数式的值; 【典型例题】例1、已知的值为2,则的值为 。例2、关于x的一元二次方程的一个根为0,则a的值为 。例3、已知关于
4、x的一元二次方程的系数满足,则此方程必有一根为 。例4、已知是方程的两个根,是方程的两个根,则m的值为 。【针对性练习】1、已知方程的一根是2,则k为 ,另一根是 。2、已知m是方程的一个根,则代数式 。3、已知是的根,则 。4、方程的一个根为( ) A B 1 C D 5、若 。3、解法【考点讲解】方法:直接开方法;因式分解法;配方法;公式法 关键点:降次类型一、直接开方法:对于,等形式均适用直接开方法【典型例题】例1、解方程: =0; 例2、若,则x的值为 。【针对性练习】1、下列方程无解的是( )A. B. C. D.类型二、因式分解法:方程特点:左边可以分解为两个一次因式的积,右边为“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 中考 复习 难题
限制150内