第8讲-立体几何中的向量方法(二)——求空间角(共11页).doc
《第8讲-立体几何中的向量方法(二)——求空间角(共11页).doc》由会员分享,可在线阅读,更多相关《第8讲-立体几何中的向量方法(二)——求空间角(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第8讲立体几何中的向量方法(二)求空间角一、选择题1.(2016长沙模拟)在正方体A1B1C1D1ABCD中,AC与B1D所成的角的大小为()A. B. C. D.解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0).(1,1,0),(1,1,1),1(1)110(1)0,AC与B1D所成的角为.答案D2.(2017郑州调研)在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A. B. C. D.解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1所在直线分别为x
2、轴、y轴、z轴,建立空间直角坐标系,如图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1,0),D1(0,0,1),所以(0,0,1),(1,1,0),(1,0,1).令平面ACD1的法向量为n(x,y,z),则nxy0,nxz0,令x1,可得n(1,1,1),所以sin |cosn,|.答案B3.在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A. B. C. D.解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),(0,1,1),设平面A1ED的
3、一个法向量为n1(1,y,z),所以有即解得n1(1,2,2).平面ABCD的一个法向量为n2(0,0,1), cosn1,n2.即所成的锐二面角的余弦值为.答案B4.(2017西安调研)已知六面体ABCA1B1C1是各棱长均等于a的正三棱柱,D是侧棱CC1的中点,则直线CC1与平面AB1D所成的角为()A.45 B.60C.90 D.30解析如图所示,取AC的中点N,以N为坐标原点,建立空间直角坐标系.则A,C,B1,D,C1,(0,0,a).设平面AB1D的法向量为n(x,y,z),由n0,n0,可取n(,1,2).cos,n,直线CC1与平面AB1D所成的角为45.答案A5.设正方体AB
4、CDA1B1C1D1的棱长为2,则点D1到平面A1BD的距离是()A. B.C. D.解析如图建立坐标系.则D1(0,0,2),A1(2,0,2),B(2,2,0),(2,0,0),(2,2,0),设平面A1BD的一个法向量n(x,y,z),则令z1,得n(1,1,1).D1到平面A1BD的距离d.答案D二、填空题6.(2017昆明月考)如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是_.解析以BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.设ABBCAA12,则C1(2,0,2),
5、E(0,1,0),F(0,0,1),则(0,1,1),(2,0,2),2,cos,EF和BC1所成的角为60.答案607.在正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于_.解析以D为坐标原点,建立空间直角坐标系,如图.设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2).设平面BDC1的一个法向量为n(x,y,z),则n,n,所以有令y2,得平面BDC1的一个法向量为n (2,2,1).设CD与平面BDC1所成的角为,则sin |cosn,|.答案8.已知点E,
6、F分别在正方体ABCDA1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则平面AEF与平面ABC所成的二面角的正切值等于_.解析延长FE,CB相交于点G,连接AG,如图所示.设正方体的棱长为3,则GBBC3,作BHAG于点H,连接EH,则EHB为所求二面角的平面角.BH,EB1,tanEHB.答案三、解答题9.(2015全国卷)如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC,(2)求直线AE与直线CF所成角的余弦值.(1)证明如图,连接BD,设BDACG,连
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 中的 向量 方法 空间 11
限制150内