2019年中考数学压轴题汇编(几何1)--解析版(共92页).doc
《2019年中考数学压轴题汇编(几何1)--解析版(共92页).doc》由会员分享,可在线阅读,更多相关《2019年中考数学压轴题汇编(几何1)--解析版(共92页).doc(91页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(2019年安徽23题)23(14分)如图,RtABC中,ACB90,ACBC,P为ABC内部一点,且APBBPC135(1)求证:PABPBC;(2)求证:PA2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12h2h3【分析】(1)利用等式的性质判断出PBCPAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出RtAEPRtCDP,得出,即h32h2,再由PABPBC,判断出,即可得出结论【解答】解:(1)ACB90,ABBC,ABC45PBA+PBC又APB135,PAB+PBA45PBCPAB
2、又APBBPC135,PABPBC(2)PABPBC在RtABC中,ABAC,PA2PC(3)如图,过点P作PDBC,PEAC交BC、AC于点D,E,PFh1,PDh2,PEh3,CPB+APB135+135270APC90,EAP+ACP90,又ACBACP+PCD90EAPPCD,RtAEPRtCDP,即,h32h2PABPBC,即:h12h2h3【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出EAPPCD是解本题的关键(2019年北京27题)27(7分)已知AOB30,H为射线OA上一定点,OH+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足OMP
3、为钝角,以点P为中心,将线段PM顺时针旋转150,得到线段PN,连接ON(1)依题意补全图1;(2)求证:OMPOPN;(3)点M关于点H的对称点为Q,连接QP写出一个OP的值,使得对于任意的点M总有ONQP,并证明【分析】(1)根据题意画出图形(2)由旋转可得MPN150,故OPN150OPM;由AOB30和三角形内角和180可得OMP18030OPM150OPM,得证(3)根据题意画出图形,以ONQP为已知条件反推OP的长度由(2)的结论OMPOPN联想到其补角相等,又因为旋转有PMPN,已具备一边一角相等,过点N作NCOB于点C,过点P作PDOA于点D,即可构造出PDMNCP,进而得PD
4、NC,DMCP此时加上ONQP,则易证得OCNQDP,所以OCQD利用AOB30,设PDNCa,则OP2a,ODa再设DMCPx,所以QDOCOP+PC2a+x,MQDM+QD2a+2x由于点M、Q关于点H对称,即点H为MQ中点,故MHMQa+x,DHMHDMa,所以OHOD+DHa+a+1,求得a1,故OP2证明过程则把推理过程反过来,以OP2为条件,利用构造全等证得ONQP【解答】解:(1)如图1所示为所求(2)设OPM,线段PM绕点P顺时针旋转150得到线段PNMPN150,PMPNOPNMPNOPM150AOB30OMP180AOBOPM18030150OMPOPN(3)OP2时,总有
5、ONQP,证明如下:过点N作NCOB于点C,过点P作PDOA于点D,如图2NCPPDMPDQ90AOB30,OP2PDOP1ODOH+1DHOHOD1OMPOPN180OMP180OPN即PMDNPC在PDM与NCP中PDMNCP(AAS)PDNC,DMCP设DMCPx,则OCOP+PC2+x,MHMD+DHx+1点M关于点H的对称点为QHQMHx+1DQDH+HQ1+x+12+xOCDQ在OCN与QDP中OCNQDP(SAS)ONQP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180,勾股定理,全等三角形的判定和性质,中心对称的性质第(3)题的解题思路是以ONQP为条件反推OP的
6、长度,并结合(2)的结论构造全等三角形;而证明过程则以OP2为条件构造全等证明ONQP(2019年北京28题)28(7分)在ABC中,D,E分别是ABC两边的中点,如果上的所有点都在ABC的内部或边上,则称为ABC的中内弧例如,图1中是ABC的一条中内弧(1)如图2,在RtABC中,ABAC,D,E分别是AB,AC的中点,画出ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t0),在ABC中,D,E分别是AB,AC的中点若t,求ABC的中内弧所在圆的圆心P的纵坐标的取值范围;若在ABC中存在一条中内弧,使得所在圆的圆心P在A
7、BC的内部或边上,直接写出t的取值范围【分析】(1)由三角函数值及等腰直角三角形性质可求得DE2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,当t时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角AEP满足90AEP135;根据题意,t的最大值即圆心P在AC上时求得的t值【解答】解:(1)如图2,以DE为直径的半圆弧,就是ABC的最长的中内弧,连接DE,A90,ABAC,D,E分别是AB,AC的中点,BC4,DEBC42,弧2;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直
8、平分线上,连接DE,作DE垂直平分线FP,作EGAC交FP于G,当t时,C(2,0),D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,m1,OAOC,AOC90ACO45,DEOCAEDACO45作EGAC交直线FP于G,FGEF根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;m综上所述,m或m1如图4,设圆心P在AC上,P在DE中垂线上,P为AE中点,作PMOC于M,则PM,P(t,),DEBCADEAOB90AE,PDPE,AEDPDEAED+DAEPDE+ADP90,DAEADPAPPDPEAE由三
9、角形中内弧定义知,PDPMAE,AE3,即3,解得:t,t00t【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题(2019年福建24题)24(12分)如图,四边形ABCD内接于O,ABAC,ACBD,垂足为E,点F在BD的延长线上,且DFDC,连接AF、CF(1)求证:BAC2CAD;(2)若AF10,BC4,求tanBAD的值【分析】(1)根据等腰三角形的性质得出ABCACB,根据圆心角、弧、弦的关系得到,即可得到ABCADB,根据三角形内角和定理得到ABC(180BAC)90BAC,ADB9
10、0CAD,从而得到BACCAD,即可证得结论;(2)易证得BCCF4,即可证得AC垂直平分BF,证得ABAF10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tanBAD的值【解答】解:(1)ABAC,ABCACB,ABCADB,ABC(180BAC)90BAC,BDAC,ADB90CAD,BACCAD,BAC2CAD;(2)解:DFDC,DFCDCF,BDC2DFC,BFCBDCBACFBC,CBCF,又BDAC,AC是线段BF的中垂线,ABAF10,AC10又BC4,设AEx,CE10x,由AB2A
11、E2BC2CE2,得100x280(10x)2,解得x6,AE6,BE8,CE4,DE3,BDBE+DE3+811,作DHAB,垂足为H,ABDHBDAE,DH,BH,AHABBH10,tanBAD【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,相交弦定理,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题(2019年甘肃兰州27题)27(10分)通过对下面数学模型的研究学习,解决问题【模型呈现】如图,在RtABC,ACB90,将斜边AB绕点A顺时针旋转90得到AD,过点D作DEAC于点E,可以推理得到ABCDAE,进
12、而得到ACDE,BCAE我们把这个数学模型成为“K型”推理过程如下:【模型应用】如图,在RtABC内接于O,ACB90,BC2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DEAC于点E,DAEABC,DE1,连接DO交O于点F(1)求证:AD是O的切线;(2)连接FC交AB于点G,连接FB求证:FG2GOGB【分析】(1)因为直角三角形的外心为斜边中点,所以点O在AB上,AB为O直径,故只需证ADAB即可由ABC+BAC90和DAEABC可证得DAE+BAC90,而E、A、C在同一直线上,用180减去90即为BAD90,得证(2)依题意画出图形,由要证的结论FG2GOGB联想到对应
13、边成比例,所以需证FGOBGF其中FGOBGF为公共角,即需证FOGBFGBFG为圆周角,所对的弧为弧BC,故连接OC后有BFGBOC,问题又转化为证FOGBOC把DO延长交BC于点H后,有FOGBOH,故问题转化为证BOHBOC只要OHBC,由等腰三角形三线合一即有BOHBOC,故问题继续转化为证DHCE联系【模型呈现】发现能证DEAACB,得到AEBC2,ACDE1,即能求ADAB又因为O为AB中点,可得到,再加上第(1)题证得BAD90,可得DAOAED,所以ADOEAD,DOEA,得证【解答】证明:(1)O为RtABC的外接圆O为斜边AB中点,AB为直径ACB90ABC+BAC90DA
14、EABCDAE+BAC90BAD180(DAE+BAC)90ADABAD是O的切线(2)延长DO交BC于点H,连接OCDEAC于点EDEA90AB绕点A旋转得到ADABAD在DEA与ACB中DEAACB(AAS)AEBC2,ACDE1ADABO为AB中点AOABDAOAED90DAOAEDADOEADDOEAOHBACB90,即DHBCOBOCOH平分BOC,即BOHBOCFOGBOH,BFGBOCFOGBFGFGOBGFFGOBGFFG2GOGB【点评】本题考查了三角形外心定义,圆的切线判定,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的判定和性质,垂径定理,等腰三角形
15、三线合一,圆周角定理其中第(2)题证明DOEA进而得到DO垂直BC是解题关键(2019年甘肃陇南27题)27.阅读下面的例题及点拨,并解决问题:例题:如图,在等边ABC中,M是BC边上一点(不含端点B,C),N是ABC的外角ACH的平分线上一点,且AM=MN求证:AMN=60点拨:如图,作CBE=60,BE与NC的延长线相交于点E,得等边BEC,连接EM易证:ABMEBM(SAS),可得AM=EM,1=2;又AM=MN,则EM=MN,可得3=4;由3+1=4+5=60,进一步可得1=2=5,又因为2+6=120,所以5+6=120,即:AMN=60问题:如图,在正方形A1B1C1D1中,M1是
16、B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角D1C1H1的平分线上一点,且A1M1=M1N1求证:A1M1N1=90【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,EB1M1中=90=A1B1M1,EB1C1是等腰直角三角形,B1EC1=B1C1E=45,N1是正方形A1B1C1D1的外角D1C1H1的平分线上一点,M1C1N1=90+45=135,B1C1E+M1C1N1=180,E、C1、N1,三点共线,在A1B1M1和EB1M1中,A1B1M1EB1M1(SAS),A1M1=EM1,1=2,A1M1=M1
17、N1,EM1=M1N1,3=4,2+3=45,4+5=45,1=2=5,1+6=90,5+6=90,A1M1N1=180-90=90【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,EB1M1中=90=A1B1M1,得出EB1C1是等腰直角三角形,由等腰直角三角形的性质得出B1EC1=B1C1E=45,证出B1C1E+M1C1N1=180,得出E、C1、N1,三点共线,由SAS证明A1B1M1EB1M1得出A1M1=EM1,1=2,得出EM1=M1N1,由等腰三角形的性质得出3=4,证出1=2=5,得出5+6=90,即可得出结论此题是四边形综合题目,考查了
18、正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键(2019年甘肃天水25题)25(10分)如图1,对角线互相垂直的四边形叫做垂美四边形(1)概念理解:如图2,在四边形ABCD中,ABAD,CBCD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,ACBD试证明:AB2+CD2AD2+BC2;(3)解决问题:如图3,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年中 数学 压轴 汇编 几何 解析 92
限制150内