二次函数的应用-——最大面积问题教学设计(共6页).doc
《二次函数的应用-——最大面积问题教学设计(共6页).doc》由会员分享,可在线阅读,更多相关《二次函数的应用-——最大面积问题教学设计(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 二次函数的应用面积最大问题教学设计二次函数的应用面积最大问题。所用教材是山东教育出版社材九年级上册第三章第六节二次函数的应用,本节共需四课时,面积最大是第一节。下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。一、教学内容的分析1、地位与作用: 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决
2、最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。2、课时安排教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。3.学情及学法分析 学生由简单的二次函
3、数yx2学习开始,然后是yax2,yax2+c,最后是y=a(x-h)2,ya(x-h)2+k,yax2+bx+c,学生已经掌握了二次函数的三种表示方式和图像的性质。对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。二、 教学目标、重点、难点的确定教学目标: 1、知识与技能:通过本节学习,巩固二次函数y=(a0)的图象与性质,理解顶点与最值的关系,会求解最值
4、问题。 2过程与方法:经历“实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务于 生活。 3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点:利用二次函数y=(a0)的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用三、教学方法与手段的选择由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为
5、主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。四、教学流程 (一) 请同学独立完成下面3个问题: 环节一:复习引入阶段我设计了三个问题:1函数y=ax2+bx+c(a0)中,若a0,则当x=-时,y( )= ;若a0,则当x= 时,y( )= 。2.(1)求函数y 2x2+2x3的最值。 (2)求函数yx2+2x3的最值。(0x 3) 3。如图,在边BC长为20cm,高AM为16cm的ABC内接矩形EFGH,并且它的一边FG在ABC的边BC上,E、F分
6、别在AB、AC上,若设EF为xcm,请用x的代数式表示EH。解:矩形EFGH, EHBC AEH_。又BC上的高AM交EH于T。=_,即=_。EH= 。设计思路通过复习题1让学生回忆二次函数的图象和顶点坐标与最值,通过做练习2复习求二次函数的最值方法-公式法、配方法、图象法,练习2(1)的设计中,学生求最值容易想到顶点,无论是配方、还是利用公式都能解决;(2)中给了0x3,学生求最值时可能还会利用顶点公式求,忽略了0x3,的限制,设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,做完练习后及时让学生总结出了取最值的点的位置往往在
7、顶点和两个端点之间选择,练习3复习相似三角形,把一条线段用X表示,为学习新课做好知识铺垫。 (二)探究新知: 新课分为在创设情境中发现问题、在解决问题中找出方法、在巩固与应用中提高技能几个环节 1、在创设情境中发现问题 提问学生上面练习中第三题矩形EFGH的最大面积是多少?学生在操作中发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而自己联想到用二次函数知识去解决,而不是老师告诉他用函数。求一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习。 2、在解决问题中找出方法
8、 这一环节我设计了探究活动一: 在上面练习题3中,若要使矩形EFGH获得最大面积,那么它的长和宽各是多少?最大面积是多少?把矩形变成一个实际问题,目的在于让学生体会其应用价值我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,把另一个设为y,其它变量用含x的代数式表示,找出等量关系,建立函数模型,实际问题还要考虑自变量的取值范围,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方
9、法,而不是为了做题而做题,为以后的学习奠定思想方法基础。 想一想的设计让学生体会到不同的解设方法所得的最大面积是一样的,图形的最大值只有一个。解决完想一想之后及时让学生总结方法,为变式训练打下思想方法基础。 3、在巩固与应用中提高技能 有一块三角形余料如图所示,C=90,AM=30cm,AN=40cm,要利用这块余料如图截出一个矩形ABCD,问矩形的边长分别是多少时,矩形的面积最大? 我设计了两个问题:(1)设长方形的一边ABx m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?问题一的设计目的: 这个问题,学生在学习相似时见过同种类型,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 应用 最大 面积 问题 教学 设计
限制150内