二次函数的应用(共2页).doc
《二次函数的应用(共2页).doc》由会员分享,可在线阅读,更多相关《二次函数的应用(共2页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 教师备课 教学内容1.4二次函数的应用第(1 )课时教学目标1、经历数学建模的基本过程。2、会运用二次函数求实际问题中的最大值或最小值。3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。教学重、难点二次函数在最优化问题中的应用。例1是从现实问题中建立二次函数模型,学生较难理解。教学过程一、创设情境、提出问题出示引例 (将作业题第3题作为引例)给你长8m的铝合金条,设问:你能用它制成一矩形窗框吗?怎样设计,窗框的透光面积最大?如何验证?二、观察分析,研究问题演示动画,引导学生观察、思考、发现:当矩形的一边变化时,另一边和面积也随之改变。深入探究如设矩
2、形的一边长为x米,则另一边长为(4-x)米,再设面积为ym2,则它们的函数关系式为并当x =2时(属于范围)即当设计为正方形时,面积最大=4(m2)引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。三、例练应用,解决问题在上面的矩形中加上一条与宽平行的线段,出示图形设问:用长为8m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?
3、引导学生分析,板书解题过程。变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面积最大?(结果精确到0.01米)练习:课本作业题第4题四、知识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题的一般步骤是什么?应注意哪些问题?学到了哪些思考问题的方法?五、布置作业:作业本 二次备课步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。教学板书1.4二次函数的应用例1例2教学反思运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值,值得注意的是,由此求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。.专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 应用
限制150内