圆锥曲线几何问题的转换(共17页).doc
《圆锥曲线几何问题的转换(共17页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线几何问题的转换(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几何问题的转换一、基础知识: 在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系2、常见几何问题的转化:(1)角度问题: 若与直线倾斜角有关,则可以考虑转化为斜率 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判
2、定(2)点与圆的位置关系 可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大 若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,为钝角(再转为向量:;若点在圆上,则为直角();若点在圆外,则为锐角()(3)三点共线问题 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 通过向量:任取两点确定向量,若向量共线,则三点共线(4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算:,则共线;(5)平行(共线)线段的比例问题:可转化为向量的数乘关系(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数
3、量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点,则的重心 (2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图): 在的角平分线上 (4)是以为邻边的平行四边形的顶点 (5)是以为邻边的菱形的顶点:在垂直平分线上(6)共线线段长度的乘积:若共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:,二、典型例题:例1:如图:分别是椭圆的左右顶点,为其右焦点,是的等差中项,是的等比中项(1)求椭圆的方程(2)已
4、知是椭圆上异于的动点,直线过点且垂直于轴,若过作直线,并交直线于点。证明:三点共线解:(1)依题意可得: 是的等差中项 是的等比中项 椭圆方程为: (2)由(1)可得:设,设 ,联立直线与椭圆方程可得: 另一方面,因为 ,联立方程: 三点共线例2:已知椭圆的右焦点为,为上顶点,为坐标原点,若的面积为,且椭圆的离心率为(1)求椭圆的方程;(2)是否存在直线交椭圆于,两点, 且使点为的垂心?若存在,求出直线的方程;若不存在,请说明理由解:(1) 椭圆方程为: (2)设,由(1)可得: 为的垂心 设 由为的垂心可得: 因为在直线上,代入可得:即 考虑联立方程: 得 ,代入可得: 解得:或 当时,不存
5、在,故舍去当时,所求直线存在,直线的方程为小炼有话说:在高中阶段涉及到三角形垂心的性质,为垂心与三角形顶点的连线垂直底边,所以对垂心的利用通常伴随着垂直条件,在解析几何中即可转化为向量的坐标运算(或是斜率关系)例3:如图,椭圆的一个焦点是 ,为坐标原点.(1)若椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(2)设过点且不垂直轴的直线交椭圆于两点,若直线绕点任意转动,恒有, 求的取值范围.解:(1)由图可得: 由正三角形性质可得: 椭圆方程为: (2)设, 为钝角 联立直线与椭圆方程:,整理可得: 恒成立即恒成立 解得: 的取值范围是 例4:设分别为椭圆的左、右顶点,椭圆长半轴的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 几何 问题 转换 17
限制150内