多边形的内角和导学案(共2页).doc
《多边形的内角和导学案(共2页).doc》由会员分享,可在线阅读,更多相关《多边形的内角和导学案(共2页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上多边形的内角和导学案一、学习目标: 1知道多边形的内角和与外角和定理; 2运用多边形内角和与外角和定理进行有关的计算二、课前知识储备:1.三角形的内角和是多少? 。2.正方形、长方形的内角和是多少? 3.从n边形的一个顶点出发可以画_条对角线,把n分成了 个三角形;三、自主学习:知识点一:多边形的内角和定理探究1:任意画一个四边形,量出它的4个内角,计算它们的和再画几个四边形,量一量、算一算你能得出什么结论? 能否利用三角形内角和等于180得出这个结论?结论: 。探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,请填空:(1)从五边形的一个顶点
2、出发,可以引_条对角线,它们将五边形分为_个三角形,五边形的内角和等于180_(2)从六边形的一个顶点出发,可以引_条对角线,它们将六边形分为_个三角形,六边形的内角和等于180_探究3:一般地,怎样求n边形的内角和呢?请填空: 从n边形的一个顶点出发,可以引_条对角线,它们将n边形分为_个三角形,n边形的内角和等于180_结论:多边形的内角和与边数的关系是 。对应练习: 1十二边形的内角和是_2一个多边形的内角和等于900,求它的边数3.课本83页练习。知识点二:多边形的外角和探究4:如图8,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?问题:如果将
3、六边形换为n边形(n是大于等于3的整数),结果还相同吗?因此可得结论: .对应练习:1、 七边形的外角和是_;十二边形的外角和是_;三角形的外角和是_。2、 一个多边形的每一个外角都等于36则这个多边形是_边形。3、 在每个内角都相等的多边形中,若一个外角是它相邻内角的,则这个多边形是_边形。四、当堂检测:1、一个多边形的每一个外角都等于40,则它的边数是_;一个多边形的每一个内角都等于140,则它的边数是_。2、如果四边形有一个角是直角,另外三个角的度数之比为2:3:4,那么这三个内角的度数分别为_。3、若一个多边形的内角和为1080,则它的边数是_。4、当一个多边形的边数增加1时,它的内角和增加_度。3、 正十边形的一个外角为_4、_边形的内角和与外角和相等5、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。6、如图,AD为ABC的中线,BE为ABD的中线,(1)若ABE=25,BAD=50,则BED的度数是 _度(2)在ADC中过点C作AD边上的高CH(3)若ABC的面积为60,BD=5,求点E到BC边的距离专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多边形 内角 导学案
限制150内