新人教版九年级上册数学复习资料(共12页).doc
《新人教版九年级上册数学复习资料(共12页).doc》由会员分享,可在线阅读,更多相关《新人教版九年级上册数学复习资料(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第21章一元二次方程知识点1一元二次方程的判断标准:(1)方程是整式方程(2)只有一个未知数(一元)(3)未知数的最高次数是2(二次) 三个条件同时满足的方程就是一元二次方程1、下面关于x的方程中:ax2+bx+c=0;3x2-2x=1;x+3=;x2-y=0;(x+1)2= x2-1一元二次方程的个数是 .2、若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是_3、若关于x的方程是一元二次方程,则k的取值范围是_4、若方程(m-1)x|m|+1-2x=4是一元二次方程,则m=_知识点 2一元二次方程一般形式及有关概念一般地,任何一个关于x的一元二次方程,经
2、过整理,都能化成一元二次方程的一般形式,是二次项,为二次项系数,bx是一次项,为一次项系数,为常数项。注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号1、将一元二次方程化成一般形式为_,其中二次项系数=_,一次项系数b=_,常数项c=_知识点3完全平方式1、说明代数式总大于2、已知,求的值.3、若x2+mx+9是一个完全平方式,则m= ,若x2+6x+m2是一个完全平方式,则m的值是 。若是完全平方式,则= 。知识点4整体运算1、已知x2+3x+5的值为11,则代数式3x2+9x+12的值为 2、已知实数x满足则代数式的值为_知识点5方程的解1、已知关于x的方程x2+3x+
3、k2=0的一个根是x=-1,则k=_ _2、求以为两根的关于x的一元二次方程 。知识点6方程的解法 方法:直接开方法;因式分解法;配方法;公式法;十字相乘法;关键点:降次1、直接开方解法方程 2、用配方法解方程 3、用公式法解方程 4、用因式分解法解方程 5、用十字相乘法解方程 知识点7一元二次方程根的判别式:1、 关于的一元二次方程. 求证:方程有两个不相等的实数根2、若关于的方程有两个不相等的实数根,则k的取值范围是 。3、关于x的方程有实数根,则m的取值范围是 知识点8韦达定理(a0, =b2-4ac0)使用的前提:(1)不是一般式的要先化成一般式;(2)定理成立的条件1、 已知方程的一
4、个根为x=3,求它的另一个根及m的值。2、 已知的两根是x1 ,x2 ,利用根于系数的关系求下列各式的值 3、已知关于x的一元二次方程x2(m+2)x+m22=0(1)当m为何值时,这个方程有两个的实数根(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值知识点9一元二次方程与实际问题1、 病毒传播问题 2、树干问题 3、握手问题(单循环问题)4、 贺卡问题(双循环问题)5、围栏问题 6、几何图形(道路、做水箱)7、 增长率、折旧、降价率问题 8、利润问题(注意减少库存、让顾客受惠等字样)9、 数字问题 10、折扣问题第22章二次函数知识点一:二次函数概念一般地,形如(是
5、常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实数知识点二:二次函数的结构特征1、等号左边是函数,右边是关于自变量的二次式,的最高次数是22、 是常数,是二次项系数,是一次项系数,是常数项知识点三:二次函数的基本形式(重点)1. 二次函数基本形式:的性质:的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值a 的绝对值越大,抛物线的开口越小。2. 的性质:上加下减的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减
6、小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值3. 的性质:左加右减的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值4. 的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值知识点四:二次函数图象的平移(难点) 1. 平移步骤:方法一: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平
7、移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或) 知识点五:二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中知识点六:二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴
8、,顶点,与轴的交点,与轴的交点.知识点七:二次函数的性质(重难点) 1. 当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 2. 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有最大值 二次函数课堂练习考点一: 二次函数的基本概念1、下列函数: ; ; ; ; ,其中是二次函数的是_,其中_, _,_ 2、当=_ 时,函数(为常数)是关于的二次函数3、当m=_时,函数是关于的二次函数4、当m=_时,函数+3x是关于的二次函数5、若点 A ( 2, ) 在函数 的图像上,则 A 点的坐标是_._ 6
9、、已知二次函数当x=1时,y= -1;当x=2时,y=2,求该函数解析式.考点二: 函数的图象与性质1、填空:(1)抛物线的对称轴是_(或 _),顶点坐标是_,当x_时,y随x的增大而增大,当x_时,y随x的增大而减小,当x= _时,该函数有最_值是_ ;(2)抛物线的对称轴是_(或 _),顶点坐标是_,当x_时,y随x的增大而增大,当x _时,y随x的增大而减小,当x=_时,该函数有最_ 值是_ ;2、对于函数下列说法:当x取任何实数时,y的值总是正的;x的值增大,y的值也增大;y随x的增大而减小;图象关于y轴对称.其中正确的是_ .3、抛物线 yx2 不具有的性质是()A、开口向下B、对称
10、轴是 y 轴C、与 y 轴不相交D、最高点是原点4、函数与的图象可能是( )A B C D考点三: 函数的图象与性质1、抛物线的开口_,对称轴是_,顶点坐标是_ ,当x_时, y随x的增大而增大, 当x_时, y随x的增大而减小.2、将抛物线向下平移2个单位得到的抛物线的解析式为_ ,再向上平移3个单位得到的抛物线的解析式为_,并分别写出这两个函数的顶点坐标_、_ .3、任给一些不同的实数k,得到不同的抛物线,当k取0,时,关于这些抛物线有以下判断:开口方向都相同;对称轴都相同;形状相同;都有最底点.其中判断正确的是_ .4、将抛物线向上平移4个单位后,所得的抛物线是_ ,当x=_时,该抛物线
11、有最_(填大或小)值,是_.5、已知函数的图象关于y轴对称,则m_;6、二次函数中,若当x取x1、x2(x1x2)时,函数值相等,则当x取x1+x2时,函数值等于_ .考点四:函数的图象与性质1、抛物线,顶点坐标是_,当x_时,y随x的增大而减小, 函数有最_值 .考点五 的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上._.2、二次函数 y(x1)22,当 x_时,y 有最小值.3、函数 y (x1)23,当 x_时,函数值 y 随 x 的增大而增大.4、已知函数.确定下列抛物线的开口方向、对称轴和顶点坐标;当x=_时,抛物线有最_值,是_ .当x_时,y随x的增大而增大;
12、当x_时,y随x的增大而减小.考点六:的图象和性质1、抛物线的对称轴是_ .2、抛物线的开口方向是_,顶点坐标是_.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式_.4、将 yx22x3 化成 ya (xh)2k 的形式,则 y_.5、把二次函数的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是_ 6、抛物线与x轴交点的坐标为_;7、函数有最_值,最值为_;A、 B、 C、 D、考点七:的性质1、函数的图象是以为顶点的一条抛物线,这个二次函数的表达式为_ 2、二次函数的图象经过原点,则此抛物线的顶点坐标是_3、如果抛物
13、线与轴交于点,它的对称轴是,那么_ 4、抛物线与x轴的正半轴交于点A、B两点,与y轴交于点C,且线段AB的长为1,ABC的面积为1,则b的值为_.5、已知二次函数的图象如图所示,则a_0,b_0,c_0,_0;6、 二次函数的图象如图,则直线的图象不经过第_象限.7、已知函数的图象如图所示,则函数的图象是( )考点七:二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a=_, b= _ , c= _.2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为_ .二次函数有最小值为,当时,它的图象的对称轴为
14、,则函数的关系式为_ 考点八:二次函数与方程和不等式1、已知二次函数与x轴有交点,则k的取值范围是_ .2、关于x的一元二次方程没有实数根,则抛物线的顶点在第_象限;3、抛物线与轴交点的个数为( )A、0 B、1 C、2 D、以上都不对4、二次函数对于x的任何值都恒为负值的条件是( )A、 B、 C、 D、5、与的图象相交,若有一个交点在x轴上,则k为( )A、0 B、-1 C、2 D、第23章旋转知识点1旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转三要素:旋转中心、旋转方向、旋转角度1、如图,D是等腰RtA
15、BC内一点,BC是斜边,如果将ABD绕点A按逆时针方向旋转到ACD的位置,回答下列问题:(1)旋转中心为 ,旋转角度为 度(2)AD D的形状是 。2、16:50的时候,时针和分针的夹角是 度 知识点2旋转的性质:1、图形中的每一点都绕着旋转中心旋转了同样大小的角度;2、每一对对应点到旋转中心的距离相等;3、每一对对应点与旋转中心的连线所成的夹角为旋转角;4、旋转只改变图形的位置,旋转前后的图形全等;AOB 1、如图,可以看作是由绕点顺时针旋转角度得到的若点在上。(1)求旋转角大小;(2)判断OB与的位置关系,并说明理由。ACB2、将直角边长为5cm的等腰直角ABC绕点逆时针旋转后得到,则图中
16、阴影部分的面积是多少?3、如图,在中, . 在同一平面内, 将绕点旋转到的位置, 使得, 求 的度数。图64、如图6,四边形是边长为1的正方形,点、分别在边和上,是由 逆时针旋转得到的图形。(1)旋转中心是点_;(2)旋转角是_度,=_度;(2)若,求证.并求此时的周长.5、ABC中,BAC90,P是ABC内一点,将ABP绕点A逆时针旋转一定角度后能与ACQ重合,AP3.(1)求APQ的面积;(2)判断BQ与CQ的位置关系,并说明理由。6、如图,将正方形ABCD中的ABD绕对称中心O旋转至GEF的位置,EF交AB于M,GF交BD于N请猜想BM与FN有怎样的数量关系?并证明你的结论7、如图,在R
17、tABC 中,D、E是斜边BC 上 两点,且DAE=45,将绕点顺时针旋转90后,得到,连接 ,证明 8、如图(1),点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC(1)求AEB的大小;(2)如图(2),OAB固定不动,保持OCD的形状和大小不变,将OCD绕着点O旋转(OAB和OCD不能重叠),求AEB的大小.知识点3旋转对称:一个平面图形绕着某一定点旋转一定角度(小于周角)后能与自身重合,这样的图形叫做旋转对称图形,这个定点叫做旋转中心。1、如图,五角星的顶点是一个正五边形的五个顶点这个五角星可以由一个基本
18、图形(图中的阴影部分)绕中心O至少经过_次旋转而得到, 每一次旋转_度2、如图,点O是正六边形ABCDEF的中心,问此正六边形绕正六边形的中心O旋转_ _度能与自身重合。3、如图的图形旋转一定角度后能与自身重合,则旋转的角度可能是_ 知识点4中心对称和中心对称图形1、如图,下列4个数字有( )个是中心对称图形 A1 B2 C3 D42.下列图形中不是中心对称图形的是( )A、 B、 C、 D、知识点5作图1、网格旋转90(注意旋转的方向),中心对称,关于原点对称。结合直角坐标系写出对称后坐标2、找出旋转对称中心(两条对应线段垂直平分线的交点),中心对称中心(两组对应点连线的交点)1、已知A(-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 九年级 上册 数学 复习资料 12
限制150内