材料力学作业参考解答(共86页).doc
《材料力学作业参考解答(共86页).doc》由会员分享,可在线阅读,更多相关《材料力学作业参考解答(共86页).doc(86页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2-1 试绘出下列各杆的轴力图。2FFNF2FFN2-2(b)答:2-3答:以B点为研究对象,由平面汇交力系的平衡条件FABFBCWB2-2 求下列结构中指定杆内的应力。已知(a)图中杆的横截面面积A1=A2=1150mm2;AECDBFAFB 解:(1)分析整体,作示力图:(2)取部分分析,示力图见(b)CFAqFCyFCxFN2(b):(3)分析铰E,示力图见(c):EFN1FN3FN2(c)2-3 求下列各杆内的最大正应力。ABC12.012.0FN (kN)(3)图(c)为变截面拉杆,上段AB的横截面积为40mm2,下段BC的横截面积为30mm2,杆材料的g=
2、78kN/m3。解:1.作轴力图,BC段最大轴力在B处AB段最大轴力在A处杆件最大正应力为400MPa,发生在B截面。2-4 一直径为15mm,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm,直径缩小了0.022mm,确定材料的弹性模量E、泊松比。解:加载至58.4kN时,杆件横截面中心正应力为线应变:弹性模量:侧向线应变:泊松比:2-6图示短柱,上段为钢制,长200mm,截面尺寸为100100mm2;下段为铝制,长300mm,截面尺寸为200200mm2。当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值。已知E钢=2
3、00GPa,E铝=70GPa。解:柱中的轴力都为F,总的变形(缩短)为:2-7 图示等直杆AC,材料的容重为g,弹性模量为E,横截面积为A。求直杆B截面的位移B。解: AB段内轴力 BC段内轴力 B点位移为杆BC的伸长量: 2-8 图示结构中,AB可视为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E3=10GPa。当G点处作用有F=60kN时,求该点的竖直位移G。解:(1)求、杆轴力 由平衡方程可以求出: (2)求杆的变形(压缩)(拉伸)(压缩)(3)由几
4、何关系:(下降)2-9答:任一截面上轴力为F,由xbb得面积为伸长量为2-11 图示一挡水墙示意图,其中AB杆支承着挡水墙,各部分尺寸均已示于图中。若AB杆为圆截面,材料为松木,其容许应力=11MPa,试求AB杆所需的直径。解:(1)求水压力的合力: (2)作示力图(a)由平衡方程求轴力(3)由强度条件,设计截面尺寸:2-10答:对水塔, , , ,2-12 图示结构中的CD杆为刚性杆,AB杆为钢杆,直径d=30mm,容许应力=160MPa,弹性模量E=2.0105MPa。试求结构的容许荷载F。解:(1)求AB杆的轴力FN : (2)由强度条件求 2-14 图示AB 为刚性杆,长为3a。A 端
5、铰接于墙壁上,在C、B 两处分别用同材料、同面积的、两杆拉住,使AB 杆保持水平。在D 点作用荷载F 后,求两杆内产生的应力。设弹性模量为E,横截面面积为A。解: 1本题为超静定问题, 见图(a),设AB杆产生角位移,则 , 2由Hooke定律:FAxFAyFN1FFN2l2l1 3.由平衡方程:4.由Hooke定律:2-15 两端固定,长度为l,横截面面积为A,弹性模量为E的正方形杆,在B、C截面处各受一F力作用。求B、C截面间的相对位移。解:1 本题为超静定问题解除A截面处约束,代之约束力,见图(a)A截面的位移为杆件的总变形量FFFNAABCD(a) 2.由约束条件 得: 3.见图(b)
6、,求BC段轴力 由平衡条件可知: 所以B,C截面相对位移为FNAFFN(b) 专心-专注-专业3-1 试作下列各杆的扭矩图。10010Mx(Nm)Mx1(kNm)5323-2 一直径d=60mm的圆杆,其两端受外力偶矩T=2kNm的作用而发生扭转。试求横截面上1,2,3点处的切应力和最大切应变,并在此三点处画出切应力的方向。(G=80GPa)。解:横截面上切应力大小沿半径线性分布,方向垂直半径3-3 从直径为300mm的实心轴中镗出一个直径为150mm的通孔而成为空心轴,问最大切应力增大了百分之几?解:实心轴空心轴最大切应力增大了3-4 一端固定、一端自由的钢圆轴,其几何尺寸及受力情况如图所示
7、(空心处有两段,内径10mm,外径30mm),试求:(1)轴的最大切应力。(2)两端截面的相对扭转角(G=80GPa)。解:(1)作扭矩图,AB段中最大切应力603040ABCD CD段中最大切应力所以轴中,(2)相对扭转角分四段计算3-2 一变截面实心圆轴,受图示外力偶矩作用,求轴的最大切应力。 500100300300ABCDE解:作扭矩图,可见最大切应力发生在AB段3-5 一圆轴AC如图所示。AB段为实心,直径为50mm;BC段为空心,外径为50mm,内径为35mm。要使杆的总扭转角为0.12,试确定BC段的长度a。设G=80GPa。解:(1)作扭矩图 (2)杆件A、C截面相对扭转角分两
8、段计算100NmMxAC 3-8 传动轴的转速为n=500转/分,主动轮输入功率P1=500kW,从动轮2、3分别输出功率P2=200kW,P3=300kW。已知=70MPa,=1/m,G=810MPa。(1)确定AB段的直径d1和BC段的直径d2。(2)若AB和BC两段选用同一直径,试确定直径d。解:(1)由输入和输出功率求等效力偶,作扭矩图5.739.55MxABC由强度条件: 由刚度条件: 为满足强度和刚度条件,AB段的直径d取91mm;BC段的直径d取80mm。(2)若AB和BC两段选用同一直径,直径d取91mm。3-7 图示传动轴的转速为200转/分,从主动轮3上输入的功率是80kW
9、,由1、2、4、5轮分别输出的功率为25、15、30和10KW。设=20Mpa(1)试按强度条件选定轴的直径。(2)若轴改用变截面,试分别定出每一段轴的直径。1.193751.911,910.4775解:1.由输入和输出功率计算等效力偶 2.作扭转图(1) d取79mm,适用于全轴。(2) 适用于1,2轮之间 适用于4,5轮之间3-14 工字形薄壁截面杆,长2m,两端受0.2kNm的力偶矩作用。设G=80GPa,求此杆的最大切应力及杆单位长度的扭转角。 解: 2-16 试校核图示销钉的剪切强度。已知F=120kN,销钉直径d=30mm,材料的容许应力=70MPa。若强度不够,应改用多大直径的销
10、钉?解: 不满足强度条件等效后:3-10(b) F=40kN, d=20mm解:中心c位置由F引起的切应力801205050FABC由M引起的剪切力满足解得C铆钉切应力最大cxcr1r2r3FM2-17 两块钢板塔接,铆钉直径为25mm,排列如图所示。已知=100MPa,bs =280MPa,板的容许应力 =160MPa,板的容许应力 =140MPa,求拉力F 的许可值,如果铆钉排列次序相反,即自上而下,第一排是两个铆钉,第二排是三个铆钉,则F 值如何改变?解: 1铆钉强度,求抗剪强度:挤压强度FNF3F/5AB2.板的抗拉强度条件求,A的截面B截面:综合上述结果,F的许可值取245.4kN
11、(最小值)3改变铆钉排列后,求解过程与上述相同。3-6答:3-10 图(a)所示托架,受力F=40kN,铆钉直径d=20mm,铆钉为单剪,求最危险铆钉上的切应力的大小及方向。F1F2F2F1AB(b)ddd解:将F等效移至铆钉群中心,得力偶, 1. 由F引起的切应力(每个铆钉大小相同,方向向下) 2. 先求由M引起的各铆钉剪力,见图(b) 解得: 上部和底部铆钉中切应力最大A(c) 3. 最大切应力 A-2 试求图形水平形心轴z的位置,并求影阴线部分面积对z轴的面积矩Sz。解:分三块计算 A2A3hA1zz形心轴位置A-3 试计算(b)图形对y,z轴的惯性矩和惯性积。解:查型钢表得20a号工字
12、钢几何性质:h 故 yzhC 由对称性,A-8 计算图示(a)图形的形心主惯性矩。解:1.首先求形心位置:2.求惯性矩4-1 求下列各梁指定截面上的剪力和弯矩。FA解:(b)自右向左分析:1-1截面,弯矩;2-2截面,弯矩(c)支座反力(铅直向上),自左向右分析:1-1截面,弯矩;2-2截面,弯矩4-2 写出下列各梁的剪力方程、弯矩方程,并作剪力图和弯矩图。解:支座反力,自左向右分析:FBFA剪力方程:5ql/2FQ3ql/2Mql225ql2/16弯矩方程:由方程作图。注意标出最大弯矩所在截面位置及最大弯矩值。4-3 利用剪力、弯矩与荷载集度之间的关系作下列各梁的剪力图和弯矩图。12345F
13、QFMF3Fl3.5Fl4Fl解:(a)自左向右分析(这样不需要计算固定端反力)梁分3段,5个控制面;(b)支座反力梁分3段,6个控制面;123465FAFB6FQ/kNM/kNm11/313/34216/34/3169/36位置距离右端5-1 图(a)所示钢梁(E=2.0105MPa)具有(b)、(c)两种截面形式,试分别求出两种截面形式下梁的曲率半径,最大拉、压应力及其所在位置。zh解:(b)截面 (上拉下压) (c)截面 形心位置: 5-4 求梁指定截面a-a上指定点D处的正应力,及梁的最大拉应力和最大压应力。ABzh解:1.求弯矩支座反力:a-a截面弯矩最大弯矩:2.求形心轴截面a-a
14、上指定点D:4-5解:5-5 图示梁的横截面,其上受绕水平中性轴转动的弯矩。若横截面上的最大正应力为40MPa,试问:工字形截面腹板和翼缘上,各承受总弯矩的百分之几?解:设工字形截面腹板上最大正应力1,其承受的弯矩h/2d翼缘上最大正应力2,其承受的弯矩,故腹板上承受总弯矩的百分比为即翼缘上承受总弯矩的百分比为5-6 一矩形截面悬臂梁,具有如下三种截面形式:(a)整体;(b)两块上、下叠合;(c)两块并排。试分别计算梁的最大正应力,并画出正应力沿截面高度的分布规律。正应力分布规律解:(a) 固定端弯矩最大最大正应力位于该截面正应力分布规律(b)根据变形协调,上下两块梁上作用的分布荷载集度均为q
15、/2(c) 两块并排时正应力分布规律两块梁上作用的分布荷载集度均为q/25-8 一槽形截面悬臂梁,长6m,受q=5kN/m的均布荷载作用,求距固定端为0.5m处的截面上,距梁顶面100mm处b-b线上的切应力及a-a线上的切应力。zzy解: 根据切应力公式,需确定横截面剪力、面积矩、形心惯性矩(1)剪力(2)形心位置、形心惯性矩,如图 (3)b-b处切应力(4)a-a处切应力由于a-a位于对称轴y轴上,故5-9 一梁由两个18B号槽钢背靠背组成一整体,如图所示。在梁的a-a截面上,剪力为18kN、弯矩为55kNm,求b-b截面中性轴以下40mm处的正应力和切应力。hbC解:b-b截面的剪力、弯
16、矩分别为18B号槽钢的几何性质,,由正应力公式切应力公式5-10 一等截面直木梁,因翼缘宽度不够,在其左右两边各粘结一条截面为5050mm的木条,如图所示。若此梁危险截面上受有竖直向下的剪力20kN,试求粘结层中的切应力。zzc解:求中性轴位置和Iz 5-11 图示一矩形截面悬臂梁,在全梁上受集度为q的均布荷载作用,其横截面尺寸为b、h,长度为。(1)证明在距自由端为x处的横截面上的切向分布内力dA的合力等于该截面上的剪力;而法向分布内力dA的合力偶矩等于该截面上的弯矩。(2)如沿梁的中性层截出梁的下半部,如图所示。问截开面上的切应力沿梁长度的变化规律如何?该面上总的水平剪力FQ有多大?它由什
17、么力来平衡?解:(1)取x截面左边部分,由其平衡,(2)沿梁长度剪力是线性分布的,该梁为等截面梁,因此横截面中性轴上切应力沿梁长度也是线性分布,由切应力互等,截开面上的切应力沿梁长度是线性分布。沿梁长度剪力方程,横截面中性轴上切应力大小沿梁长度变化规律为,宽度方向均匀分布,故总的水平剪力,它由固定端约束力平衡。Az5-12 试画出图示各截面的弯曲中心的大致位置,并画出切应力流的流向,设截面上剪力FQ的方向竖直向下。AAyzzyAzy解:FQFQFQFQ5-14 图示铸铁梁,若=30MPa,=60MPa,试校核此梁的强度。已知76410m。CD解:(1)计算支座反力,作弯矩图(2)校核强度(该梁
18、截面中性轴不对称,正负弯矩最大截面均是可能危险截面)C截面正弯矩最大D截面负弯矩最大符合强度要求4-13 =8.5MPa,求满足强度条件的最小Fmin30kNFABC1.8m1.8m1.2m0.3m0.15mMc解:最小F时,最大应力发生在C截面。5-15 一矩形截面简支梁,由圆柱形木料锯成。已知F=8kN,a=1.5m,=10MPa。试确定弯曲截面系数为最大时的矩形截面的高宽比h/b,以及锯成此梁所需要木料的最d。5-16 截面为10号工字钢的AB梁,B点由d=20mm的圆钢杆BC支承,梁及杆的容许应力=160MPa,试求容许均布荷载q。解:这是一个拉杆强度和梁的强度计算问题(1)对于BC拉
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 作业 参考 解答 86
限制150内