整体式单级主减速器设计(共23页).docx
《整体式单级主减速器设计(共23页).docx》由会员分享,可在线阅读,更多相关《整体式单级主减速器设计(共23页).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上整体式单级主减速器设计 2.1 主减速器结构方案设计主减速器的结构形式主要是根据齿轮类型、主动齿轮和从动齿轮的安置方法以及减速形式的不同而不同。主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。单级主减速器通常采用螺旋锥齿轮或双曲面齿轮传动。2.1.1螺旋锥齿轮传动螺旋锥齿轮传动(图2-1a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合
2、便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。图2-1 主减速器齿轮传动形式a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆传动2.1.2 双曲面齿轮传动双曲面齿轮传动(图2-1b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距E的存在,使主动齿轮螺旋角大于从动齿轮螺旋角(图6-4)。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比 (2-1)图2-2双曲面齿轮副受力情况式中,F1、F2分别为主、从动齿轮的圆周力;1、2分别为主、
3、从动齿轮的螺旋角。螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A的切线TT与该点和节锥顶点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角(图2-2)。通常不特殊说明,则螺旋角系指中点螺旋角。双曲面齿轮传动比为 (2-2)式中,双曲面齿轮传动比;、分别主、从动齿轮平均分度圆半径。螺旋锥齿轮传动比为 (2-3)令,则。由于,所以系数K1,一般为1.251.50。这说明:1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。3)当传动比一定,主动
4、齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点:1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。2)由于存在偏移距,双曲面齿轮副使其主动齿轮的大于从动齿轮的,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30。3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触强度提高。4)双曲面主动齿轮的变大,则不产生根切的最
5、小齿数可减少,故可选用较少的齿数,有利于增加传动比。5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。但是,双曲面齿轮传动也存在如下缺点:1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96,螺旋锥齿轮副的传动效率约为99。2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。3)双曲面主动齿轮具有较大的轴向力,使其轴
6、承负荷增大。4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮传动均可采用。单级主减速器由一对圆锥齿轮、,具有结构简单、质量小、低、使用简单等优点。但是其主传动比i0不能太
7、大,一般i07,进一步提高i0将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。鉴于单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。双曲面齿轮优点突出,所以采用的是双曲面齿轮单级减速器。2.2 主减速器主从动锥齿轮的支承方案选择主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、主减速器壳体的刚度有关以外,与齿轮的支承刚度密切相关。2.2.1 主动锥齿轮的支承主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。悬臂式支承结构(图2-3a)的特点是在锥齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为
8、了减小悬臂长度倪和增加两支承间的距离b,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支承刚度,支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70还大,另外靠近齿轮的轴径应不小于尺寸a。为了方便拆装,应使靠近齿轮的轴承的轴径比另一轴承的支承轴径大些。靠近齿轮的支承轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。图2-3 主减速器锥齿轮的支承形式
9、a)主动锥齿轮悬臂式 b)主动锥齿轮跨置式 c)从动锥齿轮悬臂式支承结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。跨置式支承结构(图2-3b)的特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。此外,由于齿轮大端一侧轴颈上的两个相对安装的圆锥滚子轴承之间的距离很小,可以缩短主动齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置。但是跨置式支承必须在主减速器壳体上有支承导向轴承所需要的轴承座,从而使主减速器壳体结构复杂,加工成本提高。另外,因主、从动齿轮之间的空间很
10、小,致使主动齿轮的导向轴承尺寸受到限制,有时甚至布置不下或使齿轮拆装困难。跨置式支承中的导向轴承都为圆柱滚子轴承,并且内外圈可以分离或根本不带内圈。它仅承受径向力,尺寸根据布置位置而定,是易损坏的一个轴承。在需要传递较大转矩情况下,最好采用跨置式支承。本设计例题是主减速器传递转矩较小的货车,因此采用悬臂式支承结构。2.2.2 从动锥齿轮的支承从动锥齿轮的支承(图2-3c),其支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。从动锥齿轮多用圆锥滚子轴承支承。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承
11、稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70。为了使载荷能尽量均匀分配在两轴承上,应尽量使尺寸c等于或大于尺寸d。在具有大的主传动比和径向尺寸较大的从动锥齿轮的主减速器中,为了限制从动锥齿轮因受轴向力作用而产生偏移,在从动锥齿轮的外缘背面加设辅助支承(图2-4)。辅助支承与从动锥齿轮背面之间的间隙,应保证偏移量达到允许极限时能制止从动锥齿轮继续变形。主、从动齿轮受载变形或移动的许用偏移量如图2-5所示。图2-4 从动锥齿轮辅助支承 图2-5 主、从动锥齿轮的许用偏移量2.3 主减速器的基本参数选择和设计计算 2.3.1 主减速比的确定主减速比i0的大小,对主减速器的结构型式、轮廓尺寸及
12、质量的大小影响很大。主减速比i0的选择,应在汽车总体设计时和传动系的总传动比(包括变速器、分动器和加力器、驱动桥等传动装置的传动比)一起,由汽车的整车动力计算来确定。正如传动系的总传动比及其变化范围()为设计传动系组成部分的重要依据一样,驱动桥的主减速比是主减速器的设计依据,是设计主减速器时的原始参数。传动系的总传动比(其中包括,主减速比i0),对汽车的动力性、燃料性有非常重大的影响,发动机的工作条件也和汽车传动系的传动比(包括主减速比)有关。可采用优化设计方法对发动机参数与传动系的传动比以及主减速比i0进行最优匹配。对于具有很大功率的轿车、客车、长途汽车,尤其是对竞赛汽车来说,在给定发动机最
13、大功率的情况下,所选择的值应能保证这些汽车有尽可能高的最高车速。这时i0值应按下式来确定:和 (2-4)式中:车轮的滚动半径,m;最大功率时的发动机转速,rmin;汽车的最高车速,kmh;变速器最高挡传动比,通常为1。对于其他汽车来说,为了用稍微降低最高车速的办法来得到足够的功率储备,主减速比i0一般应选得比按式(6-1)求得的要大1025,即按下式选择: (2-5)式中:变速器最高挡(直接挡或超速挡)传动比;分动器或加力器高挡传动比;轮边减速器传动比。按式(2-4)或式(2-5)求得的i0值应与同类汽车的主减速比相比较,并考虑到主、从动主减速齿轮可能有的齿数,对i0值予以校正并最后确定下来。
14、2.3.2 主减速器齿轮计算载荷确定除了主减速比i0及驱动桥离地间隙外,另一项原始参数便是主减速器齿轮的计算载荷。由于汽车行驶时传动系载荷的不稳定性,因此要准确地算出主减速器齿轮的计算载荷是比较困难的。这里采用格里森齿制锥齿轮计算载荷的三种确定方法。(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩 (2-6)式中,计算转矩(Nm);计算驱动桥数;主减速器传动比;变速器一挡传动比;分动器传动比;发动机到万向传动轴之间的传动效率;液力变矩器变矩系数,,最大变矩系数;发动机最大转矩(Nm);Kd猛接离合器所产生的动载系数,液力自动变速器Kd=1,手动操纵的变速器高性能赛车Kd=3,性能系
15、数fi=0的汽车Kd=1;fi0的汽车Kd=2或由经验选定。其计算公式如下:注:与选取参看下表表2-1 n与if选取表车 型高挡传动比与低挡传动比的关系44/21/326时,取85,当6时,取90。结合本设计,按照式(2-6)计算Tce:n=1,i0=2.95,i1=4,没有分动器则if= 1, = 0.9,k =1,Temax=285 Nm,性能系数fi=0则Kd=1,代入式(2-6)得:Tce=1513.35 Nm按式(2-7)计算驱动轮打滑转矩确定的从动锥齿轮计算转矩Tcs:Tcs=4781.3 Nm当计算锥齿轮最大应力时,计算转矩Tc=minTce,Tcs=9726.5 Nm按式(2-
16、8)计算按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩Tcf:各参数取值表fRfHfimam0.0300.15021150.95则代入式(2-8)可得:Tcf=723.885 Nm2.3.3 主减速器锥齿轮基本参数的选择主减速器锥齿轮的主要参数有主、从动锥齿轮齿数z1和z2、从动锥齿轮大端分度圆直径和端面模数主、从动锥齿轮齿面宽和、双曲面齿轮副的偏移距E、中点螺旋角、法向压力角等。1)主、从动锥齿轮齿数z1和z2选择主、从动锥齿轮齿数时应考虑如下因素:(1)为了磨合均匀,z1、z2之间应避免有公约数。(2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不少于40。(3)为了啮
17、合平稳、,噪声小和具有高的疲劳强度,对于轿车,z1一般不少于9;对于货车,z1一般不少于6。(4)当主传动比较大时,尽量使取得少些,以便得到满意的离地间隙。当i06时,z1可取最小值并等于5,但为了啮合平稳并提高疲劳强度常大于5;当i0较小时(3.55),z1可取712。(5)对于不同的主传动比,z1和z2应有适宜的搭配。表2-2 载货汽车驱动桥主减速器主动锥齿轮齿数传动比(z2/z1)推荐主动锥齿轮最小齿数z1主动锥齿轮允许范围z11.501.751412161.752.001311152.002.501110132.503.00109113.003.50109113.504.0010911
18、4.004.5098104.55.08795.006.007686.007.506577.5010.00556参照详见参考文献1,选择从动锥齿轮齿数。根据本设计例题传动比,查表2-2可以选择主动锥齿轮齿数为z1=14,查表6-3可以选择从动锥齿轮齿数为z2=43,重新计算传动比i0=3.07,可以反算出计算转矩Tc=minTce,Tcs=1574.91 Nm。2)从动锥齿轮大端分度圆直径D2和端面模数ms的选择。对于单级主减速器,D2对驱动桥壳尺寸有影响,D2大将影响桥壳离地间隙;D2小则影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。D2可根据经验公式初选 (2-10)式中,D2从动锥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整体 式单级主 减速器 设计 23
限制150内