数理方程在岩土工程中的应用(共4页).doc
《数理方程在岩土工程中的应用(共4页).doc》由会员分享,可在线阅读,更多相关《数理方程在岩土工程中的应用(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浅谈数理方程在岩土工程中的应用一、 由于广义函数的出现,它提供了处理偏微分方程的又一种新方法,其中许多经典的方法(突出的如Fourier分析)进一步发挥了重大的作用。在此基础上,以后还陆续出现了拟微分算子、Fourier积分算子、微局部分析、超函数等新的强有力的数学理论工具同计算机系统的完美结合,堪称为时代的发展的加速器,它不仅极大地改变了线性偏微分方程的发展,并应用于处理非线性偏微分方程的问题,数理方程在工程性学科中的应用,更深刻的给变了岩土工程的发展进程。 二、 偏微分方程在科技发展与国民经济中的巨大作用 在我国的经济建设中很多重要的科研问题都要求偏微分方程的解,
2、为相应的工程设计提供必要的数据,保证安全可靠且高效地完成任务。例如:岩土工程却是以实践和试验为基础的工程性学科,但近年来正在发展中的计算土力学,为岩土工程的发展和应用工程实践提供了便捷通道。现实中的工程问题是不能或很难用工程试验的方法来究的,怎样在试验前作较准确的预测,由于理论的发展远滞后于工程实践的应用需要,人们必须寻求新的路径:既能满足实践的定量需要,又尽可能的符合理论的定性要求。因此,发展出多种偏微分问题的处理方法,数学物理方程遇特殊函数作为一门工具性的基础学科在计算土力学中显得尤为重要 ,在处理一些实际课题时,电子计算机已越来越成为一个重要的工具,要能有效地将数学物理方程遇特殊函数同电
3、子计算机来解决实际工程问题,其先决条件是: (1)建立合理的数学物理模型。对决定岩土性质的重要变量及参数,通过大量偏微分方程及数学模型来描述;比较及优化各种模型,选定能符合实际工程的模型。 (2)确定合理的数学物理方程的边界条件与初始条件。实际中的边界条件往往是复杂多变的,初始条件更是无法精确地确定,所以就存在“抓主忽次”的问题(即能真实地反映问题,又能简化方程,更能方便计算)。(3)对相应的偏微分方程进行定性的研究。许多偏微分方程的非级数解的存在与否仍然备受争议,我们只要确定存在性、稳定性、适应性才能进行下一步的研究分析 。(4)寻求或选择有效的求解方法,特别是数值的求解方法(即设幂级数为微
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数理 方程 岩土 工程 中的 应用
限制150内