浙教版数学七年级上册一元一次方程应用题分类专题练习(共21页).docx
《浙教版数学七年级上册一元一次方程应用题分类专题练习(共21页).docx》由会员分享,可在线阅读,更多相关《浙教版数学七年级上册一元一次方程应用题分类专题练习(共21页).docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一元一次方程应用题分类专题练习 列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一、年龄问题1.小明今年6岁,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的倍?解:设x年后小明的年龄是爷爷的倍,根据题意得方程为 : 4(6+x)=72+x 二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?
2、(填表格并完成解答过程)个位十位表示为原数x+3x10x+(x+3)对调后的新数xx+310(x+3)+x解:设这个数的十位数字是x,根据题意得解方程得:答 3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得 x+x+2+x+4=156 4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。 解:设原4位数为x。 3(20000+x)+489=10x+2 解这个方程,得:x=8641 20000+x=28641 答:原数是28641.5. 将连续的奇数1,3,5,7,9,排成如下的数表:(1)十字框中的五个数的平均数
3、与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.(1),答:五个数的平均数等于15.(2)315/5=63 63-10=5363+10=7363-1=6263+1=64答:这五个数分别是53、63、73、62、64。三、日历时钟问题6、你能在日历中圈出22的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由. 77/2=38.5 答:不能。7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题(等周长变化,等体积变化)常用公式:三角行面积= ,正方形面积 圆
4、的面积 , 梯形面积 矩形面积 柱体体积 椎体体积 球体体积 8、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,则新的长方形的宽是多少?设新长方形长为xcm,列方程为 2*(9+6)=2*(5+x) 9、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm? 无解,因为放不下。10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。解:设重叠部分面积是x。224+2x=4x+6x解这个方程,得:x=28答:重叠部分
5、面积是28 cm211、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。(1)问倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少? 容器2半径8cm容器1半径4cm五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=12、 一只钢笔原价30元,现打8折出售,现售价是 24 元;如果这支钢笔的成本价为12元,那么不打折前商家每支可以获利 18 元,打折之后,商家每支还可以获利 12 元13、 一件服装标价200元,按标价的8折销售,仍可获利20元,该服装的进价是
6、 140 元;按标价的8折销售,仍可获利10%,该服装的标价是 192.5 元15、一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是_250元.设进价x元,根据题意列方程得 1.2x*0.9=x+20 16、服装店将某种服装按成本提高40%标价,又以八折优惠卖出,每件仍获利15元,则每件的成本为_17、某件商品9折降价销售后每件商品售价为元,则该商品每件原价为_。18、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是_。18、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为_19、某商场出售
7、某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?20、杉杉打火机厂生产某种型号的打火机每只的成本为2元,毛利率为25%工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15则这种打火机每只的成本降低了(精确到元毛利率) 21、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?23、某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: .问: (1)当单价为4元时,市场需求量是多少?(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?24、八一
8、体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克(1)建材商店将一张五夹板按成本价提高40后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元试问购买五夹板和油漆共需多少钱?六、人员分配调配问题:25、某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程: ;(2) 若从乙组调y名学生到甲组,
9、使得甲组人数是乙组人数的两倍,则可列方程: 。26、如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人?解:设甲班原有x人,则乙班原有 人,由题意可得方程 27、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍28、温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台。现在决定给武汉8台,南昌6台。每台机器的运费如表1。设杭州运往南昌的机器为x台。(1)把表2填写完整(单位:百元); 起点到终点的运费情况
10、 起点到终点机器分配情况 终点起点南昌武汉温州厂4百元/台8百元/台杭州厂3百元/台5百元/台 终点起点南昌(6台)武汉(8台)温州厂(10台)杭州厂(4台) X 表1 表2(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?29、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。30、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?31、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书
11、的页数。七、比值问题:技巧在于根据比值来设未知数32、 如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;如果设人数少的一组有4x人,那么人数多的一组有_人,可列方程为: _33、 甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?设甲余钱 元,乙余钱 元 ,列方程为 八、部分与整体问题思路:此类问题中,一般都存在两个等量关系,选择一个关系来设未知数,并表示出其他量,再利用另一个关系来列方程(通常用可列表的方法)。34、学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年
12、级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?分析:设初一同学有x人参加搬砖,列表如下参加年级初一学生其他年级学生总数参加人数x65每人搬砖68共搬砖400可列出方程:_35、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的价格分别是多少?36、某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。37、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣
13、和裤子应该各用花呢多少米?38、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。九、工程问题:一般情况下把工作总量看成单位1,公式:工作时间工作效率=工作总量(单位1)如:一项工程甲队需30天完成任务,则甲每天完成工作量的,则工作效率为;如果乙队需要20天完成任务,则甲每天完成工作量的,则工作效率为 ,两人一起可以完成工作效率之和39、 某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成。设需要x小时两人合作可以完成,则
14、可列方程: 40、一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天?十、(1)储蓄问题:利息=本金利率期数,本息和=本金+利息41、小明把700元存入银行,已知存款一年的利率为2.2%,一年后他从银行取钱,共拿到本息合计715.4元完成表格:本金利率期数利息本息和42、小明把春节得到的1000元钱存入银行,一年后,小明扣除利息税后连本带息共取回1080元,若利息税是20%,小明实得利息是_元,他存入银行的这一年的利率是_。43、国家规定:存款利息税=利息20%,银行一年定期储蓄的年利率为1.98
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙教版 数学 年级 上册 一元一次方程 应用题 分类 专题 练习 21
限制150内