高数中的重要定理与公式及其证明(四)(共4页).docx
《高数中的重要定理与公式及其证明(四)(共4页).docx》由会员分享,可在线阅读,更多相关《高数中的重要定理与公式及其证明(四)(共4页).docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高数中的重要定理与公式及其证明(四)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。1)泰勒公式(皮亚诺余项)设函数在点处存在阶导数,则在的
2、某一邻域内成立【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数()在处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。证明:令则我们要证明。由高阶无穷小量的定义可知,需要证明。这个极限式的分子分母都趋于零,并且都是可导的,因此用洛必达法则得再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。不难验证该过程可以一直进行下去,运用过次洛必达法则后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中的 重要 定理 公式 及其 证明
限制150内