2013年高考理科数学全国卷(共11页).doc
《2013年高考理科数学全国卷(共11页).doc》由会员分享,可在线阅读,更多相关《2013年高考理科数学全国卷(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2013年高考理科数学试题解析(课标)第卷一、 选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。1.已知集合,则 ( )A.AB= B.AB=R C.BAD.AB2.若复数满足,则的虚部为()A. B. C.4 D.3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线:()的离心
2、率为,则的渐近线方程为A. B. C. D.5.运行如下程序框图,如果输入的,则输出s属于A. B. C. D.6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A.B. C. D. 7.设等差数列的前项和为,则 ( )A.3 B.4 C.5 D.68.某几何体的三视图如图所示,则该几何体的体积为A B C D9.设为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若,则 ( )A.5 B.6C.7D.810.已知椭圆的右焦点为,过点的直线交椭圆于两
3、点。若的中点坐标为,则的方程为 ()A.B.C.D.11.已知函数,若|,则的取值范围是A B C D12.设的三边长分别为,的面积为,若,则()A.Sn为递减数列 B.Sn为递增数列C.S2n1为递增数列,S2n为递减数列D.S2n1为递减数列,S2n为递增数列二填空题:本大题共四小题,每小题5分。13.已知两个单位向量a,b的夹角为60,cta(1t)b,若bc=0,则t=_.14.若数列的前n项和为Sn,则数列的通项公式是=_.15.设当时,函数取得最大值,则_16.若函数=的图像关于直线对称,则的最大值是_.三.解答题:解答应写出文字说明,证明过程或演算步骤。17.(本小题满分12分)
4、如图,在ABC中,ABC90,AB=,BC=1,P为ABC内一点,BPC90(1)若PB=,求PA;(2)若APB150,求tanPBA18.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,BA A1=60.()证明ABA1C;()若平面ABC平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值。19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作
5、检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。20.(本小题满分12分)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.()求C的方程;()是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(本小题满分共12分)已知函数,若曲线和曲线都过点P(0,2
6、),且在点P处有相同的切线()求,的值;()若2时,求的取值范围。22(本小题满分10分)选修41:几何证明选讲 如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。 ()证明:DB=DC; ()设圆的半径为1,BC= ,延长CE交AB于点F,求BCF外接圆的半径。23.(本小题10分)选修44:坐标系与参数方程 已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为。()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)。24.(本小题满分10分)选修45:不等式选讲已
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 年高 理科 数学 全国卷 11
限制150内