图形的相似导学案(共25页).doc
《图形的相似导学案(共25页).doc》由会员分享,可在线阅读,更多相关《图形的相似导学案(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上27.1图形的相似(一) 教学目的:(1) 从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念(2) 了解成比例线段的概念,会确定线段的比重点、难点1 重点:相似图形的概念与成比例线段的概念2 难点:成比例线段概念一. 观察图片,体会相似图形1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)2 、小组讨论、交流得到相似图形的概念 什么是相似图形? 3 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:二、成比例线段概念1问题:
2、如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?归纳:两条线段的比,就是两条线段长度的比2、成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc三、巩固练习1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗? 2、填空题形状 的图形叫相似形;两个图形相似,其
3、中一个图形可以看作由另一个图形的 或 而得到的。3如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_cm,宽是_cm; (大)长是_cm,宽是_cm;(2)(小) ;(大) (3)你由上述的计算,能得到什么结论吗?4在比例尺是1:的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?5AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?课题 27.1 图形的相似(二)一、教学目标1知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等2会根据相似多边形的特征识别两个多边形是否相似,并
4、会运用其性质进行相关的计算二、重点、难点1重点:相似多边形的主要特征与识别2难点:运用相似多边形的特征进行相关的计算三、探索新知1、观察图片,体会相似图形性质(教材P36页)(1) 图27.1-4(1)中的A1B1C1是由正ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?图27.1-4(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?(3)什么叫成比例线段?(阅读课本回答)2 、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等3【结论】:(1
5、)相似多边形的特征:相似多边形的对应角_,对应边的比_反之,如果两个多边形的对应角_,对应边的比_,那么这两个多边形_几何语言:在ABC和A1B1C1中若则ABC和A1B1C1相似 (2)相似比:相似多边形_的比称为相似比问题:相似比为1时,相似的两个图形有什么关系? 结论:相似比为1时,相似的两个图形_,因此_形是一种特殊的相似形四、例题讲解例1(补充)(选择题)下列说法正确的是( )A所有的平行四边形都相似 B所有的矩形都相似C所有的菱形都相似 D所有的正方形都相似 分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不
6、一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D例2、例(教材P37页)如图27.1-6,四边形ABCD和EFGH相似,求角的大小和EH的长度27.1-6 例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题解:五
7、、课堂练习1在比例尺为110 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离2如图所示的两个直角三角形相似吗?为什么?3如图所示的两个五边形相似,求未知边、的长度六、当堂检测1(选择题)ABC与DEF相似,且相似比是,则DEF 与ABC与的相似比是( )A B C D2(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形A3个 B4个 C5个 D6个3已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别
8、是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少? 4如图,ABEFCD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长5如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值 (:1)课题 27.2.1相似三角形的判定(一)【总第3课时】教学目的:(1) 会用符号“”表示相似三角形如ABC ;(2) 知道当ABC与的相似比为k时,与ABC的相似比为1/k(3) 理解掌握平行线分线段成比例定理重点、难点教学重点
9、: 理解掌握平行线分线段成比例定理及应用教学难点: 掌握平行线分线段成比例定理应用一、知识链接1、相似多边形的主要特征是什么?2、相似三角形有什么性质?二 合作探究1)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=_, B=_, C=_, 且 2)问题:如果k=1,这两个三角形有怎样的关系?明确 (1)在相似多边形中,最简单的就是相似三角形。(2)用符号“”表示相似三角形如ABC ;(3)当ABC与的相似比为k时,与ABC的相似比为1/k3) 活动1
10、(教材P40页 探究1)(1) 如图27.2-1),任意画两条直线l1 , l2,再画三条与l1 , l2 相交的平行线l3 , l4, l5.分别量度l3 , l4, l5.在l1 上截得的两条线段AB, BC和在l2 上截得的两条线段DE, EF的长度, ABBC 与DEEF相等吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, ABBC 与DEEF相等吗?(2) 问题,ABAC=DE( ),BCAC=( )DF强调“对应线段的比是否相等”(3) 归纳总结:平行线分线段成比例定理 三条_截两条直线,所得的_线段的比_。应重点关注:平行线分线段成比例定理中相比线段同线;4)例1
11、 如图、若AB=3cm,BC=5cm,EK=4cm,写出= =_、 =_。 A E求FK的长? B K F C4) 活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?3、 归纳总结:平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_线段的比_.三. 练习巩固 如图,在ABC中,DEBC,AC=4 ,
12、AB=3,EC=1.求AD和BD.四. 小结巩固(1) 谈谈本节课你有哪些收获“三角形相似的预备定理”这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似(2) 相似比是带有顺序性和对应性的:如ABCABC的相似比,那么ABCABC的相似比就是,它们的关系是互为倒数五、当堂检测1如图,ABCAED, 其中DEBC,找出对应角并写出对应边的比例式2如图,ABCAED,其中ADE=B,找出对应角并写出对应边的比例式 3 、已知:梯形ABCD中,ADBC,EFBC,AE=FC,求:AE的长。 A D E F B C课题 27.2.1 相
13、似三角形的判定(二)一、学习目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程2会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题二、重点、难点1重点:相似三角形的定义与三角形相似的预备定理2难点:三角形相似的预备定理的应用三 知识链接(1)相似多边形的主要特征是什么?(2) 平行线分线段成比例定理及其推论的内容是什么?(3)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=A, B=B, C=C, 且 (4)问题:
14、如果k=1,这两个三角形有怎样的关系?四 、探索新知1 问题:如果ABCADE,那么你能找出哪些角的关系?边呢? 2 、思考如图27.2-3,在ABC中,DEBC,DE分别交AB,AC于点D,E。问题:(1) ADE与ABC满足“对应角相等”吗?为什么?(2) ADE与ABC满足对应边成比例吗?由“DEBC”的条件可得到哪些线段的比相等?(3) 根据以前学习的知识如何把DE移到BC上去?(作辅助线EFAB)你能证明AE:AC=DE:BC吗?(4)写出ABCADE的证明过程。(5) 、归纳总结:判定三角形相似的(预备)定理:平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。五、
15、例题讲解例1(补充)如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6求AD、DC的长分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素对于(3)可由相似三角形对应边的比相等求出AD与DC的长 解:例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 分析:由DEBC,可得ADEABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长解:六、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三
16、角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3、如图,ABEFCD,图中共有 对相似三角形,写出来并说明理由;4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 七、当堂检测1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边的比例式 3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长4、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的
17、位置上,求球拍击球的高度h(设网球是直线运动)课题 27.2.1相似三角形的判定(三)【总第5课时】学习目标:(1) 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法(2) 能够运用三角形相似的条件解决简单的问题重点、难点学习重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。学习难点: (1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似一.知识链接(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 相似三角形与全等三角形有怎
18、样的关系?二 、探索新知 探讨问题:1、如图,如果要判定ABC与ABC相似,是不是一定需要一一验证所有的对应角和对应边的关系?2、可否用类似于判定三角形全等的SSS方法,能否通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?3、 探究2任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。(1)问题:怎样证明这个命题是正确的呢?(2)探求证明方法(已知、求证、证明)如图27.2-4,在ABC和ABC中,求证ABCABC 证明 :4 【归纳】 三角形
19、相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似 5 、探讨问题:可否用类似于判定三角形全等的SAS方法,能否通过两个三角形的两组对应边的比相等和它们对应的夹角相等,来判定两个三角形相似呢?(画图,自主展开探究活动)6 【归纳】 三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似三、例题讲解解:归纳分析:判定两个三角形是否相似,可以根据已知条件,画草图,看是否符合相似三角形的定义或三角形相似的判定方法中,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图形 相似 导学案 25
限制150内