人教版高中数学【必修四】[知识点整理及重点题型梳理]-任意角和弧度制-基础(共7页).doc
《人教版高中数学【必修四】[知识点整理及重点题型梳理]-任意角和弧度制-基础(共7页).doc》由会员分享,可在线阅读,更多相关《人教版高中数学【必修四】[知识点整理及重点题型梳理]-任意角和弧度制-基础(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上人教版高中数学必修四知识点梳理重点题型(常考知识点)巩固练习任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。【要点梳理】要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.要点诠释:角的概
2、念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差的整数倍.3常用的象限角角的终边所在位置角的集合x轴正半轴y轴正半轴x轴负半轴y轴负半轴x轴y轴坐标轴是第一象限角,所以是第二象限角,所以是第三象限角,所以是第四象限角,所以要点二:弧度制
3、1弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).2角度与弧度的换算弧度与角度互换公式: 1rad=57.30=5718,1=0.01745(rad)3弧长公式:(是圆心角的弧度数),扇形面积公式:.要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.【典型例题】类型一:角的概念的理解例1下列结论:第一象限角都是锐角;锐角都是第一象限角;第一象限角一
4、定不是负角;第二象限角是钝角;小于180的角是钝角、直角或锐角。其中正确的结论为_。【思路点拨】比较锐角和第一象限角的关系,比较负角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论【答案】【解析】390角是第一象限角,可它不是锐角,所以不正确。锐角是大于0且小于90的角,终边落在第一象限,故是第一象限角,所以正确。330角是第一象限角,但它是负角,所以不正确。480角是第二象限角,但它不是钝角,所以不正确。0角小于180,但它既不是钝角,也不是直角或锐角,故不正确。【总结升华】正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与
5、否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可。举一反三:【变式1】(1)一个角为30,其终边按逆时针方向旋转三周后的角度是多少?(2)时钟走了3小时20分,则分针所经过的角的度数为多少?时针所转过的角的度数是多少?【答案】(1)1110(2)1200 100 【解析】(1)终边按逆时针方向旋转三周,转过的角为3603=1080,再加上原来的角度30,所以旋转后的角是1110。(2)时针、分针都是顺时针方向旋转,故所转过的角度数为负值。3小时20分,分针转了周,故转过的角度数为360=1200,时针转了周,故转过的角度数为360=100。 类型二:终边相同的角的集合例2在与
6、10030角终边相同的角中,求满足下列条件的角。 (1)最大的负角;(2)360720内的角。 【思路点拨】根据终边相同的角之间相差周角的整数倍,我们可以表示出与10030的角终边相同的角的集合,找出满足条件的k值,即可得到答案【答案】(1)50(2)670【解析】(1)与10030角终边相同的角的一般形式为=k360+10030(kZ),由360k360+100300,得10390k36010030,解得k=28,故所求的最大负角为=50。(2)由360k360+10030720,得9670k3609310,解得k=26。故所求的角为=670。【总结升华】把任意角化为+k360(kZ且036
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修四 知识点整理及重点题型梳理 人教版 高中数学 必修 知识点 整理 重点 题型 梳理 任意 弧度 基础
限制150内