《等比数列的前n项和》(共8页).doc





《《等比数列的前n项和》(共8页).doc》由会员分享,可在线阅读,更多相关《《等比数列的前n项和》(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课题:等比数列的前n项和教材:人教版必修五2.5.1 授课教师: 姜黎黎教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;教学重点:(1)等比数列的前n项和公式; (2)等比数列的前n项和公式的应用;教学难点:等比数列的前n项和公式的推导;教学方法:问题探索法及启发式讲授法教 具:多媒体教学过程:一、复习提问回顾等比数列
2、定义,通项公式。(1)等比数列定义:(,(2)等比数列通项公式:(3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入:阅读:课本第55页“国王赏麦的故事”。问题:如何计算引出课题:等比数列的前n项和。三、问题探讨:问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2)(1)+(2)得: 探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。探究:等比数列前n项和公
3、式是否能用这种思想推导?根据等比数列的定义: 变形: 具体: 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。所以将这一特点应用在前n项和上。由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2)由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。由等比数列的通项公式推出求和公式的第二种形式: 当时, 四.知识整合:1等比数列的前n项和公式:当q=1时, 当时, 2公式特征:等比数列求
4、和时,应考虑 与 两种情况。当时,等比数列前n项和公式有两种形式,分别都涉及四个量,四个量中“知三求一”。等比数列通项公式结合前n项和公式涉及五个量,五个量中“知三求二”(方程思想)。3等比数列前n项和公式推导方法:错位相减法。五、例题精讲:例1运用公式解决国王赏麦故事中的难题。变式练习:求等比数列1,2,4,8的前多少项和是63. 求等比数列1,2,4,8第4项到第7项的和. 例2画一个边长为2cm的正方形,再将这个正方形各边的中点相连得到第2个正方形, 依次类推若一共画了7个正方形,求第7个正方形的面积?若已知所画正方形的面积和为,求一共画了几个正方形,及所画的最后一个正方形的面积。 解:
5、由题意得:每个正方形的面积构成等比数列,且(1) (2)答:(1)第七个正方形的面积是。 (2)一共测了5个正方形,所画的最后一个正方形的面积是。巩固练习:已知等比数列中,,求。 已知等比数列中,,,求n,。六、课堂小结:1、等比数列的前n项和公式: 当q=1时, 当时, 2、等比数列的前n项和推导方法:错位相减法。3、数学思想:类比,分类讨论,方程的数学思想。七、课后作业: 基础题:课本P61 习题2.5 A组1,2 提高题:求和(探究与发现:查阅网络,思考等比数列前n项和公式还有无其它推导方法? 八、板书设计:2.5.1等比数列的前n项和公式: 例1 例2特征 变式练习: 巩固练习: 九、
6、课后反思: 等比数列的前n项和公式教学设计说明 河南省开封市第二十五中学 姜黎黎等比数列前n项和是人教版必修5第二章数列中第五节第一课时的内容。下面, 我从教材分析,情境创设、公式推导,公式应用,教学反思等几个方面,谈谈自己的管窥之见,与各位老师探讨。教材分析等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续、是进一步数列知识和解决一类求和问题的重要基础和有力工具。它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所蕴涵的类比、分类讨论、方程等思想方法,都是学生今后学习和工作中必备的数学素养。 学情分析就学生而言,等差、等比数列的定义和通项
7、公式,等差数列的前项和的公式是学生在学习之前已经具备的知识基础。学生具体研究学习了等差数列前n项和公式的推导方法,具备了一定的探究能力。基于此,学生会产生思考,等比数列前n项和公式应该如何推导,公式是从什么新的角度建构?其重要性和普遍性体现在哪里? 应该说学生从内心来讲,有想探究等比数列前n项和公式的欲望和驱动力。教学目标在知识方面:理解等比数列的前n项和公式的推导方法,掌握等比数列的前n项和公式并能运用公式解决一些简单问题。在能力方面:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想,优化思维品质。在情感方面:培养学生将数学学习放眼生活,用生活眼光看数
8、学的思维品质。重点难点 重点:使学生掌握等比数列的前项和公式,用等比数列的前n项和公式解决实际问题。 难点:由研究等比数列的结构特点推导等比数列的前项和公式。情境创设数学课程标准中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.是对课堂教学实践的要求. 我选择的问题情景是国王赏麦的故事. 国际象棋起源于古代印度,关于国际象棋有这样一个传说: 相传古印度宰相达依尔,发明了国际象棋。当时的国王大为赞赏,就问他想要什么。达依尔说:“请在棋盘的64个方格上,第一格放1颗麦粒,第二格放2颗麦粒,第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列的前n项和 等比数列

限制150内