二次函数练习题(共13页).doc
《二次函数练习题(共13页).doc》由会员分享,可在线阅读,更多相关《二次函数练习题(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1. 若抛物线y=(xm)2+(m+1)的顶点在第一象限,则m的取值范围为()Am1Bm0Cm1D1m02. 若二次函数y=x2bx的图像的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2bx=5的解为ABCD3. 对于二次函数y=x2+2x有下列四个结论:它的对称轴是直线x=1;设y1=x12+2x1,y2=x22+2x2,则当x2x1时,有y2y1;它的图象与x轴的两个交点是(0,0)和(2,0);当0x2时,y0其中正确的结论的个数为( )A1B2C3D44. 将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解
2、析式为()Ay=(x1)2+4 By=(x4)2+4 Cy=(x+2)2+6 Dy=(x4)2+65. 在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A BC D6. 如图,抛物线y=x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:当x0时,y0;若a=1,则b=4;抛物线上有两点P(x1,y1)和Q(x2,y2),若x112,则y1 y2;点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是( )(A) (B)(C) (D)7. 二次函数(
3、)的图象如图所示,下列说法:,当时,若(,)、(,)在函数图象上,当时,其中正确的是( )A B C D8. 如图,抛物线y=ax2+bx+c(c0)过点(1,0)和点(0,3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A 3P1 B6P0 C3P0 D6P39. 如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()Acm2Bcm2Ccm2Dcm210. 已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(1,0),下列结论:abc0;b24ac=0;a2;4a2b
4、+c0其中正确结论的个数是()A1B2C3D411. 如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是(写出所有正确结论的序号)b0 ab+c0阴影部分的面积为4若c=1,则b2=4A12. 二次函数的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图象上,四边形OBAC为菱形,且OBA=120,则菱形OBAC的面积为 13. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围在水库中围成了如图所示的三块矩形区域,而且这三块矩形区域
5、的面积相等设BC的长度为xm,矩形区域ABCD的面积为ym2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?区域区域区域岸堤ABCDEFGH第22题图14. 如图,在平面直角坐标系xOy中,抛物线yax 22ax3a(a0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:ykxb与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为 ,求a的值;(3)设P是抛物线的对称轴上的一点,
6、点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由xyOABDlC备用图xyOABDlCE15. 如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0)P点是抛物线上的一个动点,且横坐标为m(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足PAO不大于45,求P点的横坐标m的取值范围;(3)当P点的横坐标m0时,过P点作y轴的垂线PQ,垂足为Q问:是否存在P点,使QPO=BCO?若存在,请求出P点的坐标;若不存在,请说明理由答案:1.B 2.D 3.C 4.B 5.
7、C 6.C 7.B 8.B 9.C 10.B 11 12.13. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围在水库中围成了如图所示的三块矩形区域,而且这三块矩形区域的面积相等设BC的长度为xm,矩形区域ABCD的面积为ym2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?区域区域区域岸堤ABCDEFGH第22题图考点:二次函数的应用.专题:应用题分析:(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 练习题 13
限制150内