第二节可分离变量的微分方程(共8页).doc
《第二节可分离变量的微分方程(共8页).doc》由会员分享,可在线阅读,更多相关《第二节可分离变量的微分方程(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二节 可分离变量的微分方程教学目的:熟练掌握可分离变量的微分方程的解法教学重点:可分离变量的微分方程的解法教学难点:可分离变量的微分方程的解法教学内容:本节开始,我们讨论一阶微分方程 (1)的一些解法.一阶微分方程有时也写成如下的对称形式: (2)在方程(2)中,变量与对称,它既可以看作是以为自变量、为未知函数的方程 ,也可看作是以为自变量、为未知函数的方程 ,在第一节的例1中,我们遇到一阶微分方程,或 把上式两端积分就得到这个方程的通解:。但是并不是所有的一阶微分方程都能这样求解。例如,对于一阶微分方程 (3)就不能像上面那样直接两端用积分的方法求出它的通解。原因
2、是方程(3)的右端含有未知函数积分求不出来。为了解决这个困难,在方程(3)的两端同时乘以,使方程(3)变为,这样,变量与已分离在等式的两端,然后两端积分得或 (4)其中C是任意常数。可以验证,函数(4)确实满足一阶微分方程(3),且含有一个任意常数,所以它是方程(3)的通解。一般地,如果一个一阶微分方程能写成 (5)的形式,就是说,能把微分方程写成一端只含的函数和,另一端只含的函数和,那么原方程就称为可分离变量的微分方程。假定方程(5)中的函数和是连续的,设是方程的解,将它代入(5)中得到恒等式将上式两端积分,并由引进变量,得设及依次为和的原函数,于是有 (6)因此,方程(5)满足关系式(6)
3、。反之,如果是由关系到式(6)所确定的隐函数 ,那么在的条件下,也是方程(5)的解。事实上,由隐函数的求导法可知,当时,这就表示函数满足方程(5)。所以如果已分离变量的方程(5)中和是连续的,且,那么(5)式两端积分后得到的关系式(6),就用隐式给出了方程(5)的解,(6)式就叫做微分方程(5)的隐式解。又由于关系式(6)中含有任意常数,因此(6)式所确定的隐函数是方程(5)的通解,所以(6)式叫做微分方程(5)的隐式通解。例1 求微分方程 (7)的通解。解 方程(7)是可分离变量的,分离变量后得两端积分 得 从而 。又因为仍是任意常数,把它记作C便得到方程(7)的通解。例2 放射性元素铀由于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 可分离 变量 微分方程
限制150内