正弦定理教学设计(共4页).doc
《正弦定理教学设计(共4页).doc》由会员分享,可在线阅读,更多相关《正弦定理教学设计(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上必修51.1.1 正弦定理教学设计 教材地位分析本课是普通高中新课程标准实验教科书数学(5)(人教A版)第一章第一节正弦定理。根据我所任教的学生情况,我将正弦定理划分为两个课时,这是第一课时。正弦定理在学习了三角函数与平面向量之后,可以启发学生联想所学知识,运用三角函数知识作为工具,运用转化与化归作为指导思想,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解三角形中存在边与角的定量关系的一个开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。而正弦定理本身的应用又十分广泛,在高考中的地位举足轻重,因此做好该节内容的教学,使
2、学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比猜想证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学的思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。同时,通过本节课的学习为后面学习余弦定理提供了方法上的模式;为将来解决测量、工业、几何等方面的实际问题提供了理论基础,使学生进一步感受、了解到数学在实际中的应用。二、教学目标分析根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:认知目标:在创设的问题情境中,使学生主动地去发现正弦定理的内容和推证正弦定理及简单运用正弦定理能力目标:通过对正弦定理的引入、推导和应
3、用,培养学生的创新意识和思维能力,能体会用“作高”将一般三角形转化为直角三角形;将几何问题转化为代数问题。情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣;培养学生合情推理探索数学规律的数学思想,体验由特殊到一般的数学方法,培养学生在方程思想指导下解三角形运算能力。三教学重点与难点教学重点:正弦定理的证明及简单应用教学难点:(1)正弦定理的证明 (2)运用正弦定理解已知“两边及一对角”的三角形四设计思想本节课,学生在不知正弦定理内容和证明方法的前提下,在我预设的思路中,学生积极主动参与一个个相关
4、联的探究活动过程,通过“发现 、猜想、 证明”的数学思想方法发现并证明定理,让学生经历了知识形成的过程,感受到创新的快乐,激发学生学习数学的兴趣。其次,以问题为导向设计教学情境,促使学生去思考问题,去发现问题,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。期以来,我们的课堂教学太过于重视结论,轻视过程。为了应付考试,为了使对公式定理应用达到所谓的“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化。在数学概念公式的教学中,往往采用的所谓“掐头去尾烧中段”的方法,到头来把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策。新课程倡导:强调过程,
5、强调学生探索新知识的经历和获得新知的体验,不能再让学生脱离学生的内心感受,必须让学生追求过程的体验,把“数学发现的权利”还给学生。基于以上认识,本节课我所考虑的不是简单的把正弦定理的内容告诉给学生,而是创设一些数学情境,让学生自己去发现定理,猜想、证明定理。从发现定理的过程中让学生体会到:定理并不是凭空产生的,发现定理并不都是高不可攀的事情,通过努力,也可以做一些看似数学家才能完成的事。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激励了学生的学习兴趣,也提高了他们提出问题、解决问题的能力,培养了他们的创新能力,这正是新课程所倡导的教学理念。五教学过程(一)创设情境,引入新知你在A岸
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 教学 设计
限制150内