全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc
《全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc》由会员分享,可在线阅读,更多相关《全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上全等三角形辅助线系列之二与中点有关的辅助线作法大全一、中线类辅助线作法1、遇到三角形的中线,可以倍长中线,使延长线段与原中线长相等,构造全等三角形,通过全等将分散的条件集中起来,利用的思维模式是全等变换中的“旋转”2、遇到题中有中点,可以构造三角形的中位线,利用中位线的性质转移线段关系3、遇到三角形的中线或与中点有关的线段,如果有直角三角形,可以取直角三角形斜边的中点,试图构造直角三角形斜边的中线,利用斜边中线的性质转移线段关系典型例题精讲【例1】 如图,已知在中,是边上的中线,是上一点,延长交于,求证: 【解析】延长到,使,连结,又,【例2】 如图,在中,交于点,点
2、是中点,交的延长线于点,交于点,若,求证:为的角平分线 【解析】延长到点,使,连结在和中,而又,为的角平分线【例3】 已知为的中线,的平分线分别交于、交于求证: 【解析】延长到,使,连结、易证,又,的平分线分别交于、交于,利用证明,在中,【例4】 如图所示,在中,是的中点,垂直于,如果,求证 【解析】延长至,使,连接、因为,则从而,而,故,因此,即,则,即因为,故,则为Rt斜边上的中线,故由此可得【例5】 在中,是斜边的中点,、分别在边、上,满足若,则线段的长度为_【解析】如图、延长至点,使得,联结、由,有又,【例6】 如图所示,在中,延长到,使,为的中点,连接、,求证【解析】解法一:如图所示
3、,延长到,使容易证明,从而,而,故 注意到,故,而公用,故,因此解法二:如图所示,取的中点,连接因为是的中点,是的中点,故是的中位线,从而,由可得,故,从而,【例7】 已知:ABCD是凸四边形,且E、F分别是AD、BC的中点,EF交AC于M;EF交BD于N,AC和BD交于G点 求证:【解析】取AB中点H,连接EH、FH,EHBD,FHAC,【例8】 在中,以为底作等腰直角,是的中点,求证:且【解析】过作交于又,又故且【例9】 如图所示,在中,为的中点,分别延长、到点、,使过、分别作直线、的垂线,相交于点,设线段、的中点分别为、求证:(1);(2)【解析】(1)如图所示,根据题意可知且,且,所以
4、而、分别是直角三角形、的斜边的中点,所以,又已知,从而(2)由(1)可知,则由可得而、均为等腰三角形,所以【例10】 已知,如图四边形中,、分别是和的中点,、的延长线分别交于、两点求证:【解析】连接,取中点,连接、 ,同理,【例11】 已知:在中,动点绕 的顶点逆时针旋转,且,连结过、的中点、作直线,直线与直线、分别相交于点、(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明)(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明【解析】图2:,图3: 证明:在图2中,取的中点,连结、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 辅助线 系列 中点 作法 大全 12
限制150内