中考圆的复习资料(经典+全)(共18页).doc
《中考圆的复习资料(经典+全)(共18页).doc》由会员分享,可在线阅读,更多相关《中考圆的复习资料(经典+全)(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 圆的知识点复习知识点1 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。题型 1. 在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB800mm,则油的最大深度为 mm.2. 如图,在ABC中,C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求 AD的长。CBDA3. 如图,弦AB垂直于O的直径CD,OA=5,AB=6,求BC长。 4. 如图所示,在O中,CD是直径,AB是弦,ABCD于M,CD=15cm,OM:OC=3:5,求弦AB的长。知识点2 圆心角:顶点在圆心的角叫做圆心角。弦心距:过圆心作弦的垂线
2、,圆心与垂足之间的距离叫弦心距。定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。题型1. 如果两条弦相等,那么( ) A这两条弦所对的弧相等 B这两条弦所对的圆心角相等 C这两条弦的弦心距相等 D以上答案都不对2.下列说法正确的是() A相等的圆心角所对的弧相等 B在同圆中,等弧所对的圆心角相等 C相等的弦所对的圆心到弦的距离相等 D圆心到弦的距离相等,则弦相等 3. 线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交 弧AB
3、、AC于C、D,AD的垂直平分线EF分别 交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是() A弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC 4. 弦心距是弦的一半时,弦与直径的比是_,弦所对的圆心角是_. 5. 如图,AB为O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_.6. 如图,AB和DE是O的直径,弦ACDE,若弦BE=3,则弦CE=_7. 如图,已知AB、CD为O的两条弦,弧AD=弧BC, 求证:AB=CD。8. 如图,BC为O的直径,OA是O的半径,弦BEOA, 求证:AC=AE。 第5题
4、图 第6题图 第7题图 第8题图 知识点3 圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。推论半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。圆内接四边形性质:圆内接四边形的对角互补。题型1. 下列说法正确的是( ) A顶点在圆上的角是圆周角 B两边都和圆相交的角是圆周角 C圆心角是圆周角的2倍 D圆周角度数等于它所对圆心角度数的一半2下列说法错误的是( ) A等弧所对圆周角相等 B同弧所对圆周角相等 C同圆中,相等的圆周角所对弧也相等 D同圆中,等弦所对的圆周角相等3. 已知O是ABC
5、的外接圆,若A=80,则BOC的度数为( )A40 B80 C160 D120 4. 在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30 B.30或150 C.60 D.60或1205. ABC三个顶点A、B、C都在O上,点D是AB延长线上一点,AOC=140, CBD 的度数是( )A.40 B.50 C.70 D.110 第8题图6.等边三角形ABC的三个顶点都在O上,D是弧AC上任一点(不与A、C重合),则ADC的度数是 _。7. O中,若弦AB长2cm,弦心距为cm, 则此弦所对的圆周角等于 。8. 如图,AB为O的直径,点C在O上, 若B=60, 则A等于_
6、。9. 如图,在O中,AB是直径,CD是弦,ABCD. (1)P是弧CAD上一点(不与C、D重合),试判断 CPD与COB的大小关系, 并说明理由. (2)点P在劣弧CD上(不与C、D重合时), CPD与COB有什么数量关系?请证明你的结论。 9. 如图,C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点 BMO=120。(1)求证:AB为C直径。 (2)求C的半径及圆心C的坐标。 第9题图 11. 如图,O的直径AB=8cm,CBD=30,求弦DC的长。 第10题图 第11题图 第12题图12. 如图,A、B、C、D四点都在O上,AD是O的直径,且AD=6c
7、m,若ABC=CAD,求弦AC的长。24.2 点、直线、圆和圆的位置关系24.2.1 点和圆的位置关系知识点1 点和圆的位置关系设O的半径为r,点P到圆心的距离为d,则:(1)点P在圆外 dr(2)点P在圆上 d=r(3)点P在圆外 dr知识点2 确定圆的条件不在同一条直线上的三个点确定一个圆。知识点3 三角形的外接圆:三角形三个顶点确定一个圆,这个圆叫做三角形的外接圆。三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。知识点4 反证法假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。这种方法叫做反证法。题型1. 若O所在平
8、面内一点P到O上的点的最大距离为a,最小距离为b(ab),则此圆的半径为( )。A. B. C. 或 D. a+b或ab2.三角形的外心是( )A.三条中线的交点 B.三条边的中垂线的交点C.三条高的交点 D.三条角平分线的交点3.下列命题不正确的是( )A.三点确定一个圆 B.三角形的外接圆有且只有一个C.经过一点有无数个圆 D.经过两点有无数个圆4.平面上不共线的四点,可以确定圆的个数为( )A.1个或3个 B.3个或4个 C.1个或3个或4个 D.1个或2个或3个或4个5.锐角三角形的外心位于_,直角三角形的外心位于_,钝角三角形的外心位于 _。6.下列说法正确的是:_。(1) 经过三个
9、点一定可以作圆(2)任意一个三角形一定有一个外接圆(3)任意一个圆一定有一内接三角形,并且只有一个内接三角形(4)三角形的外心到三角形各个顶点的距离都相等7. 边长为6cm的等边三角形的外接圆半径是_。8. ABC的三边为2,3, ,设其外心为O,三条高的交点为H,则OH的长为_。9. 矩形ABCD边AB=6cm,AD=8cm,(1)若以A为圆心,6cm长为半径作A,则点B在A_,点C在A_,点D在A_, AC与BD的交点O在A_;(2)若作A,使B、C、D三点至少有一个点在A内,至少有一点在A外, 则A的半径r的取值范围是_。10. 如图,A、B、C三点表示三个工厂,要建立一个供水站, 使它
10、到这三个工厂的距离相等,求作供水站的位置 (不写作法,尺规作图,保留作图痕迹)。11. 如图,已知在ABC中,ACB=900,AC=12,AB=13,CDAB,以C为圆心,5为半径作C,试判断A,D,B 三点与C的位置关系。 12. 如图,在钝角ABC中,ADBC,垂足为D点,且AD与DC的长度为x2-7x+12=0的两个根(ADDC),O为 ABC的外接圆,如果BD的长为6,求ABC的外接圆O的面积。 第11题图 第12题图13. 已知ABC内接于O,ODBC,垂足为D,若BC=2,OD=1,求BAC的度数。(注意:分类讨论)24.2.1 直线和圆的位置关系知识点1 基本概念1. 直线和圆有
11、两个公共点,叫做直线和圆相交,这条直线叫圆的割线,这两个公共点叫交点。2. 直线和圆有唯一个公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点。3. 直线和圆没有公共点时,叫做直线和圆相离。知识点2 直线和圆的位置关系的判定 设O的半径为r,直线l到圆心的距离为d,则: 直线l和O相交 dr题型1. 在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆,必与() A. x轴相交 B. y轴相交 C. x轴相切 D. y轴相切2. 已知O的半径为5 cm,直线l上有一点Q且OQ =5cm,则直线l与O的位置关系是( ) A、相离 B、相切 C、相交 D、相切或相交 3. 已知圆的半
12、径等于10厘米,直线和圆只有一个公共点,则圆心到直线的距离是_。4. 等边三角形ABC的边长为2,则以A为圆心,半径为1.73的圆与直线BC的位置关系是_;以A为圆心,_为半径的圆与直线BC相切。5. 已知O的直径为10cm。(1)若直线l与O相交,则圆心O到直线l的距离为_;(2)若直线l与O相切,则圆心O到直线l的距离为_;(3)若直线l与O相离,则圆心O到直线l的距离为_。6. 如图,M与x轴相交于点A(2,0), B(8,0),与y轴相切于点C, 求圆心M的坐标 知识点3 切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线。切线的性质定理:圆的切线垂直于过切点的半径。题型1
13、命题:“圆的切线垂直于经过切点的半径”的逆命题是() A.经过半径的外端点的直线是圆的切线 B.垂直于经过切点的半径的直线是圆的切线 C.垂直于半径的直线是圆的切线 D.经过半径的外端并且垂直于这条半径的直线是圆的切线2. 如图,BC是O直径,P是CB延长线上一点,PA切O于A,若PA,OB1,则APC等于() A. 150 B.300 C.450 D.6003. 如图,线段AB过圆心O,交O于点A、C,B300,直线BD与O切于点D,则ADB的度数是() A.1500 B.1350 C.1200 D.10004.如图,的直径与弦的夹角为,切线与的延长线交于点,若的半径为3, 则的长为()A.
14、6 B. C.3 D.5. PA是O的切线,切点为A,PA=,APO=30,则O的半径长为_6. 如图,直线AB与O相切于点B,BC是O的直径,AC交O于点D,连结BD,则图中直角三角形有 _个第2题图 第3题图 第4题图 第6题图 7. 如图,PAQ是直角,O 与AP相切于点T,与AQ交于B、C两点. (1)BT是否平分OBA?说明你的理由; (2) 若已知AT4,弦BC6,试求O 的半径R. 8. 如图,AB是O的直径,点D在AB的延长线上,BD=OB,点C在圆上,CAB=30, 求证:DC是O的切线。9. 在RtABC中,B=90,A的平分线交BC于D,以D为圆心,DB长为半径作D。 试
15、说明:C是D的切线。EFBOCA.ABDCO 第7题图 第8题图 第9题图 第10题图10. 已知直角梯形 ABCD 中,ADBC,ABBC,以腰DC的中点 E 为圆心的圆与 AB 相切,梯形的上底 AD与底 BC 是方程 10x + 16 = 0的两根,求 E 的半径 r 。11. 如图,ABC内接于O ,直线EF经过 B 点,CBF A。 求证:EF 是O 的切线。 第11题图OABEDC12. 如图,RtABC中,B90,O是AB上的一点,以O为圆心,OB为半径的圆与AB交于点E, 交AC于点D,其中DEOC。(1)求证:AC为O的切线。(2)若AD2,且AB、AE的长是关于x的 方程x
16、28xk0的两个实数根,求O的半径、CD的长。ABCOGFDE13. 如图,等腰ABC中,ACBC10,AB12,以BC为 第12题图 直径作O交AB于点D,交AC于点G,DFAC,垂足为 F,交CB的延长线于点E。(1)求证:直线EF是O的切线。 第13题图(2)求DF、DE的长。. ABCDEM14. 如图,RtABC中,ACB90,CDAB于D,以 CD为半径作C与AE切于点E,过点B作BMAE。(1)求证:BM是C的切线。 第14题图ABDECO(2)作DFBC于F,若AB16,DBM60,求EF的长。15. 如图,AB为O的直径,D为的中点,DCAE 交AE的延长线于C。(1)求证:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习资料 经典 18
限制150内