《华东师大版八年级数学上册《尺规作图》教案(共6页).doc》由会员分享,可在线阅读,更多相关《华东师大版八年级数学上册《尺规作图》教案(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上尺规作图教案教学目标1、了解尺规作图.2、掌握尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角.3、尺规作图的步骤.4、掌握尺规的基本作图:画角平分线;5、尺规作图的简单应用,解尺规作图题,会写已知、求作和作法,掌握准确的作图语言;6、经过一已知点作已知直线的垂线;7、作已知线段的垂直平分线.教学重点画图,写出作图的主要画法,并完成作图.教学难点写出作图的主要画法,应用尺规作图.教学方法引导法,演示法.教学过程【一】(一)引入直尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆.请大家画一条长4cm的线段,画
2、一个48的角,画一个半径为3cm的圆.如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗?实际上,只用无刻度的直尺和圆规作图,在数学上叫做尺规作图.(二)新课1.画一条线段等于已知线段.请同学们探索用直尺和圆规准确地画一条线段等于已知的线段.已知线段a,用直尺和圆规准确地画一条线段等于已知线段a.请同学们讨论、探索、交流、归纳出具体的作图方法.已知三边作三角形.已知:线段a、b、c.(画出三条线段a、b、c)求作:ABC,使得三边为线段a、b、c.作法:(1)画一条线段AB,使得AB=c.(2)以点A为圆心,以线段b的长为半径画圆弧;再以点B为圆心,以线段a的长为半径画圆弧;两弧交于点
3、C.(3)连结AC,BC.ABC即为所求.2.画一个角等于已知角.请同学们探索用直尺和圆规准确地画一个角等于已知角.已知角MPN,用直尺和圆规准确地画一个角等于已知角MPN.请同学们参照课本,交流、归纳出具体的作图方法.作法:(1)画射线OA.(2)以角MPN的顶点 P为圆心,以适当长为半径画弧,交MPN的两边于E、F.(3)以点O为圆心,以PE长为半径画弧,交OA于点C.(4)以点C为圆心 ,以EF长为半径画弧,交前一条弧于点D.(5)经过点D作射线OB.AOB就是所画的角.(如图)注意:几何作图要保留作图痕迹.探索如何过直线外一点做已知直线的平行线;请同学们讨论、探索、交流、归纳出具体的作
4、图方法.根据下列条件作三角形:(1)已知两边及夹角作三角形;(2)已知两角及夹边作三角形;请同学们讨论、探索、交流、归纳出具体的作图方法(顺序).练习:(三)小结请同学们自己对本课内容进行小结.【二】(一)引入我们已熟悉尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角,那么利用尺规还能画角平分线吗?(二)新课前面我们学习了用尺规画线段,那么你能利用尺规作图将一个角两等分吗?利用尺规作图画角平分线.请同学们探索用直尺和圆规准确地画出一个角的平分线.已知AOB,用直尺和圆规准确地画出已知AOB的平分线.请各小组同学先讨论、探索、交流、归纳出具体的作图方法,然后参看书本.已知与,求作一个角
5、,使它等于(+)的一半.分析:要完成这个作图,先作出等于(+)的角,再作平分线即可.(已知、求作、作法由学生自行完成)已知三角形中的一个角,此角的平分线长,以及这个角的一边长,求作三角形.分析:首先作出符合条件的图形草图,分析图形的特征,然后确定作图的顺序,写出已知、求作、作法,作图中遇到属于基本作图的,只叙述基本作图即可.已知:,以及线段b、c(bc).求作:ABC,使得BAC=,AB=c,BAC的平分线 AD=b.作法:(1)作MAN=.(2)作MAN的平分线AE.(3)在AM上截取AB=c,在AE上截取AD=b.(4)连结BD,并延 长交AN于点C.ABC就是所画的三角形.(如图)已知三
6、角形的一边及这边上的中线和高(中线长大于高),求作三角形.同学们先自主思考探索,然后各小组同学讨论、交流、归纳出具体的作图方法.再请学生代表上黑板示范,并解释原由.已知直线和直线外两点(过这两点的直线与已知直线不垂直),利用尺规作图在直线上求作一点,使其到直线外已知两点的距离和最小.同学们先自主思考,然后各小组交流意见,完成作图.练习:教材练习第1、2题.(三)小结1、尺规作图的五种常用基本作图;2、掌握一些规范的几何作图语句;3、学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述即可;4、解决尺规作图问题,先作出符合条件的图形草图,再确定具体的作图方法.【三】(一)
7、引入我们已熟悉尺规的两个基本作图:画线段,画角.那么利用尺规还能解决什么作图问题呢?(二)新课1.画直线的垂线.请同学们探索用直尺和圆规准确地画出一条直线的垂线.请同学们讨论、探索、交流、归纳出具体的作图方法.过直线外一点作直线的垂线.已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)如何经过已知直
8、线上一点作已知直线的垂线呢?学生自己试一试,再参看书本.2.探索如何过一点、两点和不在同一直线上的三点作圆.思考:如何解决这一实际问题?下面我们共同探寻解决这一问题的办法.探究1:过一个已知点A如何作圆?(如图,让学生动手去完成)学生讨论并发现:过点A所作圆的圆心在哪儿?半径多大?可以作几个这样的圆?(圆心不定,半径不定,可以作无数个圆) 探究2:过已知两点A、B如何作圆?(如图,学生动手去完成)学生继续讨论并发现:它们的圆心到A、B两点的距离怎样?能用式子表示吗?圆心在哪里?过点A、B两点的圆有几个?(OA=OB,圆心在直线AB的垂直平分线上,有无数个圆)探究3:过同一平面内三个点的情况会怎
9、样呢?分两种情况研究:(1)求作一个圆,使它经过不在一直线上三点A、B、C.已知:不在一直线上三点A、B、C,求作一个圆,使它同时经过点A、B、C.(学生口述作法,教师示范作图过程)学生讨论并发现:这样一共可作几个圆?圆心在哪里?圆心到A、B、C三点的距离怎样?(可作一个圆,圆心是线段AB、AC、BC的垂直平分线的交点,圆心到A、B、C三点距离相等)(2)过在一直线上的三点A、B、C可以作几个圆?(不能作出)发现结论:不在同一直线上的三点确定一个圆.3.作已知线段的垂直平分线.请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线.已知线段a,用直尺和圆规准确地画出已知线段a的垂直平分线.解决这一问题,要利用好线段垂直平分线的性质.请同学们讨论、探索、交流、归纳出具体的作图方法.请同学们参看书本“试一试”.已知底边及底边上的高作等腰三角形.分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形.已知:底边a、及底边上的高h.(画出两条线段a、h)求作:ABC,使得一底边为a、底边上的高为h.作法:(略).(三)小结请同学们自己对本课内容进行小结.专心-专注-专业
限制150内