沪科版八年级数学下册教学计划和全册教案(共97页).docx
《沪科版八年级数学下册教学计划和全册教案(共97页).docx》由会员分享,可在线阅读,更多相关《沪科版八年级数学下册教学计划和全册教案(共97页).docx(97页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017-2018沪科版八年级数学下册教学计划一、学生基本情况: 八(3)班学生数为42人,上学期期末考试及格21人。在学生所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。二、本学期教学任务: 本学期教学内容,共计五章,知识的前后联系分析如下:第十六章二次根式,本章学习二次根式的概念、性质和它的运算,分两节1. 二次根式,2. 二次根式
2、的运算。二次根式的重点是二次根式的化简与计算,难点是正确理解和运用公式。重难点:重点二次根式,难点:二次根式的运算。第十七章 一元二次方程,本章通过实际问题让学生初步体会一元二次方程的概念、并且进一步探究一元二次方程的解法和根的判别式。使学生了解一元二次方程的根与系数的关系,最终掌握一元二次方程的应用。重难点:1.一元二次方程的解法(重难点)2一元二次方程的根与系数的关系(重点)3一元二次方程的应用(难点)第十八章勾股定理,直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质
3、,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。重难点:1. 勾股定理(重、难点)2. 勾股定理的逆定理(重点)第十九章四边形,四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的
4、应用和深化。重难点:1.平行四边形(重点)2.矩形菱形正方形(重、难点)第二十章数据的初步分析,本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。重难点:1数据的集中趋势(重点)2数据的离散程度(重、难点)三、主要措施: 1、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发
5、现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。 3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。 5、指导成立“课外兴趣小组”,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。四、课时分配第16章 二次根式 约需10课时第17
6、章 一元二次方程 约需18课时第18章 勾股定理 约需8课时第19章 四边形 约需21课时第20章 数据的初步分析 约需10课时 五、本学期教学进度安排:周 次起止时间教学内容作 业备 注12.26-3.2开学报名16.1二次根式16.1.1二次根式的概念16.1.2二次根式的性质同步练习23.53.916.2二次根式的运算16.2.1.二次根式的乘除同步练习33.123.16 16.2.2.二次根式的加减单元小结评价练习同步练习43.193.2317.1一元二次方程17.2一元二次方程的解法同步练习53.263.3017.3一元二次方程的根的判别式 17.4一元二次方程的根与系数的关系同步练
7、习64.2 4.417.5一元二次方程的应用单元小结评价练习同步练习74.84.1318.1勾股定理同步练习84.164.2018.2勾股定理的逆定理同步练习94.234.28单元小结评价练习期中测试试卷讲解105.2 5.419.1多边形的内角和同步练习115.7 5.1119.2平行四边形同步练习125.145.1819.3.1矩形矩形的性质和判定同步练习135.215.2519.3.2菱形菱形的性质和判定同步练习145.28 6.119.3.3正方形19.4综合与实践同步练习156.4 6.820.1数据的频数分布同步练习166.116.1520.2.1数据的集中趋势同步练习176.19
8、6.2220.2.2数据的离散程度同步练习186.256.29复习迎接期末考试同步练习沪科版数学八年级下册教案第16章 二次根式第1课时二次根式的概念1了解二次根式的概念;(重点)2理解二次根式有意义的条件;(重点)3理解(a0)是一个非负数,并会应用(a0)的非负性解决实际问题(难点)一、情境导入1小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2已知圆的面积是6,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】 二次根式的识别 (2015安顺期末)下列各式:; ,其
9、中二次根式的个数有()A1个 B2个 C3个 D4个解析:根据二次根式的概念可直接判断,只有满足题意故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:含有二次根号“”;被开方数为非负数两者缺一不可变式训练:见学练优本课时练习“课堂达标训练”第2题【类型二】 二次根式有意义的条件 代数式有意义,则x的取值范围是()Ax1且x1 Bx1Cx1且x1 Dx1解析:根据题意可知x10且x10,解得x1且x1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(
10、3)若式子中含有分母,则字母的取值必须使分母不为零变式训练:见学练优本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值【类型一】 利用被开方数的非负性求字母的值 (1)已知a,b满足|b1|0,求2ab的值;(2)已知实数a,b满足a3,求a,b的值解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可解:(1)由题意知得2a8,b1,则2ab9;(2)由题意知解得b2.所以a0033.方法总结:当几个非负数的和为0时,这几个非负数均为0;当题目中,同时出现和时(即二次根式下的被开方数互为相反数),则可得a0.变式训练:见学练优本课时练习“课堂达标训练”第8题【类型二】 与
11、二次根式有关的最值问题 当x_时,3的值最小,最小值为_解析:由二次根式的非负性知0,当0即x时,3的值最小,此时最小值为3.故答案为,3.方法总结:对于二次根式0(a0),可知其有最小值0.变式训练:见学练优本课时练习“课后巩固提升”第8题三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件第2课时二次根式的性质1理解和掌握()2a(a0)和|a|;(重点)2能正确运用二次根式的性质1和性质2进行化简和计算(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?
12、若边长是,则面积是多少?如果正方形的面积是a,那么它的边长是多少?若边长是,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】 利用()2a(a0)计算 计算:(1)()2; (2)()2;(3)(2)2; (4)(2)2.解析:(1)可直接运用()2a(a0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab)2a2b2,再利用()2a(a0)进行计算解:(1)()20.3;(2)()2(1)2()213;(3)(2)222()212;(4)(2)222()24(xy)4x4y.方法总结:形如(n)2(m0)的二次根式的化简,可先利用(ab)2a2
13、b2,化为n2()2(m0)后再化简变式训练:见学练优本课时练习“课堂达标训练”第3题【类型二】 利用|a|计算 计算:(1);(2);(3).解析:利用|a|进行计算解:(1)2;(2)|;(3)|.方法总结:|a|的实质是求a2的算术平方根,其结果一定是非负数变式训练:见学练优本课时练习“课堂达标训练”第9题【类型三】 利用二次根式的性质化简求值 先化简,再求值:a,其中a2或3.解析:先把二次根式化简,再代入求值,即可解答解:aaa|a1|,当a2时,原式2|21|211;当a3时,原式3|31|347.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值变式训练:见学练优
14、本课时练习“课堂达标训练”第10题探究点二:利用二次根式的性质进行化简【类型一】 与数轴的综合 如图所示为a,b在数轴上的位置,化简2.解析:由a,b在数轴上的位置确定a0,ab0,ab0.再根据|a|进行化简解:由数轴可知2a1,0b1,则ab0,ab0.原式2|a|ab|ab|2aab(ab)2a2b.方法总结:利用|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:把被开方数的底数移到绝对值符号中;根据绝对值内代数式的正负性去掉绝对值符号变式训练:见学练优本课时练习“课堂达标训练”第7题【类型二】 与三角形三边关系的综合 已知a、b、c是ABC的三边长,化简.解析:根
15、据三角形的三边关系得出bca,bac,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可解:a、b、c是ABC的三边长,bca,bac,原式|abc|bca|cba|abc(bca)(bac)abcbcabac3abc.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简变式训练:见学练优本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思
16、考问题的习惯性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用第1课时二次根式的乘法1掌握二次根式的乘法运算法则;(重点)2会进行二次根式的乘法运算(重点、难点)一、情境导入小颖家有一块长方形菜地,长m,宽m,那么这个长方形菜地的面积是多少?二、合作探究探究点一:二次根式的乘法法则成立的条件 式子成立的条件是()Ax2 Bx1C1x2 D1x2解析:根据题意得解得1x2.故选C.方法总结:运用二次根式的乘法法则:(a0,b0),必须注意被开方数是非负数这一条件变式训练:见学练优本课时练习“课堂达标训练”第2题探究点二:二次根式的乘法【类型一】 二次根式的乘法运
17、算 计算:(1);(2)9();(3)2();(4)2a()(a0,b0)解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘解:(1)原式;(2)原式(9)27;(3)原式(2);(4)原式2a16a3b.方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘最后结果要化为最简二次根式,计算时要注意积的符号变式训练:见学练优本课时练习“课堂达标训练”第4题【类型二】 逆用性质3(即,a0,b0)进行化简 化简:(1);(2);(3)(a0,b0)解析:利用积的算术平
18、方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号解:(1)140.57;(2);(3)15a3b.方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题变式训练:见学练优本课时练习“课堂达标训练”第8题【类型三】 二次根式的乘法的应用 小明的爸爸做了一个长为cm,宽为cm的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号)解析:根据“矩形的面积长宽”“圆的面积半径的平方”进行计算解:设圆的半径为rcm.因为矩形木板的面
19、积为168(cm)2,所以r2168,r2(r2舍去)答:这个圆的半径为2cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想变式训练:见学练优本课时练习“课后巩固提升”第9题三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算第2课时二次根式的除法1会利用商的算术平方根的性质化简二次根式;(重点,难点)2掌握二次根式的除法法则,并会运用法则进行计算;(重点、难点)3掌握最简二次根式的概念,并会熟练
20、运用(重点)一、情境导入计算下列各题,观察有什么规律?(1)_;_(2)_;_;_.二、合作探究探究点一:二次根式的除法 计算:(1);(2);(3);(4)()(a0,b0)解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简解:(1);(2);(3);(4)()().方法总结:二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;二次根式的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪科版 八年 级数 下册 教学计划 教案 97
限制150内