初三数学:函数专题复习(共12页).doc
《初三数学:函数专题复习(共12页).doc》由会员分享,可在线阅读,更多相关《初三数学:函数专题复习(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上XXXX教育学科教师辅导讲义讲义编号 学员编号: 年 级:初三 课时数: 学员姓名: 辅导科目:数学 学科教师: 学科组长签名及日期学员家长签名及日期课 题函数专题复习授课时间:备课时间:教学目标1. 全面掌握一次函数、二次函数、反比例函数的图象与性质。重点、难点重点:函数的性质;难点:函数在实际生活中的应用。考点及考试要求1. 函数与圆、四边形、动点问题的结合。教学内容一次函数:一、相关知识回顾(一)一次函数的相关概念1、变量与常量在一个变化过程中,我们称数值发生变化的量为变量。有些量的数值是始终不变化的,我们称它们为常量。如:一个匀速行驶的货车,速度为常量,时间和
2、路程为变量。2、函数的概念函数:一般地,在一个变化的过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。自变量、函数值如果当时,那么叫做当自变量的值为时的函数值。函数图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。 函数表示:函数的表示方法有三种:列表法、解析式法和图象法。3、一次函数正比例函数一般地,形如(是常数,)的函数,叫做正比例函数,其中叫做比例。正比例函数图象的性质当k0时,直线经过第一、三象限,随的增大而增大当k0时,直线经过第一、三象限,
3、随的增大而增大一次函数一般地,形如(、是常数,)的函数,叫做一次函数。当时,即,所以说正比例函数是一种特殊的一次函数。一次函数图象的画法我们在作图时主要取过(0,)(,0)的一条直线。 图象的平移 图象左右平移的规律是:图象上下平移的规律是:一次函数解析式的求法:一次函数解析式主要运用待定系数法,求出系数、,还原方程就可以了。二、强化练习1、下列各曲线中不能表示y是x的函数是()。OxyOxyOxyOxy A B C D2、若点A(2,4)在函数yk x2的图象上,则下列各点在此函数图象上的是() A、(0,2)B、(1.5,0)C、(8,20)D、(0.5,0.5)3、函数yk(xk)(k0
4、 )的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限4、如果直线y2xm与两坐标轴围成的三角形面积等于m,则m的值是()A、3B、3C、4D、45、若把一次函数y=2x3,向上平移3个单位长度,得到图象解析式是( )A、y=2x B、 y=2x6 C、y=5x3 D、y=x36、如图,直线y=x+2交x轴于点A,交y轴于点B,点P(x , y)是线段AB上一动点(与A,B不重合),PAO的面积为S,求S与x的函数关系式。OPYBAx7、小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下
5、列问题:小强到离家最远的地方需几小时?此时离家多远?何时开始第一次休息?休息时间多长?小强何时距家21?(写出计算过程)反比例函数:一、相关知识回顾内容解读反比例函数也是中考重点考查的内容之一,它要求考生能结合具体情境体会反比例函数的意义,根据已知条件确定反比例函数的关系式;会画反比例函数的图象,并能根据图象和关系式探索其性质;能用反比例函数解决实际问题。考点链接:1反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y 。或 或 (k为常数,k0)的形式,那么称y是x的反比例函数。2. 反比例函数的图象和性质k的符号k0k0图像的大致位置oyxyxo经过象限第 象限第 象限性质在每一象
6、限内y随x的增大而 。在每一象限内y随x的增大而 。二、强化练习1. 已知反比例函数的图象经过点,则这个反比例函数的表达式是 。2在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是 ()Ak3 Bk0 Ck3 D k03某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图1所示。当气球内的气压大于120 kPa时,气球将爆炸。为了安全起见,气球的体积应( )A不小于m3 B小于m3 C不小于m3 D小于m34如图2,若点在反比例函数的图象上,轴于点,的面积为3,则 。5.已知反比例函数y = 的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 函数 专题 复习 12
限制150内