高三一轮复习函数专题1函数的基本性质(共20页).doc
《高三一轮复习函数专题1函数的基本性质(共20页).doc》由会员分享,可在线阅读,更多相关《高三一轮复习函数专题1函数的基本性质(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高三一轮复习函数专题1、函数的基本性质复习提问:1、 如何判断两个函数是否属于同一个函数。2、 如何求一个函数的定义域(特别是抽象函数的定义域问题)3、 如何求一个函数的解析式。(常见方法有哪些)4、 如何求函数的值域。(常见题型对应的常见方法)5、 函数单调性的判断,证明和应用(单调性的应用中参数问题)6、 函数的对称性(包括奇偶性)、周期性的应用7、 利用函数的图像求函数中参数的范围等其他关于图像问题知识分类一、函数的概念:函数的定义含有三个要素,即定义域A、值域C和对应法则f.当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义
2、域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.1、试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n1(nN*);(4)f(x)=,g(x)=;(5)f(x)=x22x1,g(t)=t22t1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x的范围)1、求下列函数的定义域:(1) (2)(3) (4) (5) (6)(7)(6) (8)(为常数)2、(1)已知f(x)的定义域为 1,2 ,求f (2x-1)的定义域; (2)已知f (
3、2x-1)的定义域为 1,2 ,求f(x)的定义域;3、若函数的定义域为1,1,求函数的定义域4、5、 已知函数的定义域为R,求实数k的取值范围。三、函数的解析式求函数解析式常用的几种方法:待定系数法、换元法(代换法)、解方程法、1、换元(或代换)法:1、 已知求.2、 已知(),求()的解析式3、 已知(),求()的解析式4、 已知函数,求函数,的解析式。2、 待定系数法1、 已知函数()是一次函数,且满足关系式3(1)(1),求()的解析式2、 已知是二次函数,且,求的解析式。3、解方程法(1)、已知函数满足,求(2)、已知函数为偶函数,为奇函数,且+=求、3、已知函数满足,则= 。4、设
4、是R上的奇函数,且当时, ,则当时=_ _ 在R上的解析式为 5、 设与的定义域是, 是偶函数,是奇函数,且,求与 的解析表四、函数值域的求法1、配方法:对于求二次函数或可转化为形如的函数的值域(最值)一类问题,我们常常可以通过配方法来进行求解.例1:求二次函数()的值域.例2:求函数的值域. 例3:求函数的最大值与最小值。例4:求函数的最大值和最小值。2、换元法:通过引入一个或多个新变量或代数式代替原来的变量或代数式或超越式,通过换元,我们常常可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式等,这样我们就能将比较复杂的函数转化成易于求值域的函数进行求解.例6:(整体换元)
5、已知,求函数的值域.例7:(整体换元) 求函数的值域.例10:已知函数的值域为,求函数的值域。3、不等式法:例11:求函数()的值域.例13:求函数的值域. 例14:求函数的值域. 4、单调性法:对于形如(、为常数,)或者形如而使用不等式法求值域却未能凑效的函数,我们往往可以考虑使用单调性法.例15:求函数的值域.例16:求函数()的值域.例17:求函数的值域。例18:求函数 的值域.例19:求函数的值域。例20:求函数的值域。5、判别式法:一般地,形如、的函数,我们可以将其转化为()的形式,再通过求得的范围.但当函数为指定区间上的函数时,用判别式法求出的范围后,应将端点值代回到原函数进行检验
6、,避免发生错误.例21:求函数的值域.例22:求函数的值域. 例23:已知函数的定义域为,值域为,求的值.【例20】设函数 的值域为 ,求a,b .【例21】已知函数y=f(x)= 的值域为1,3,求实数b,c的值.6、方程法:用方程法求解函数值域是指利用方程有解的条件求函数值的取值范围即值域的方法,其理论依据是:定理1:函数(定义域为)的值域是使关于的方程有属于的解的值的集合. 定理2:若为最简有理分式,则函数的值域是使关于的方程有解的值的集合.例24:求函数的值域。例25:求函数的值域。例26:求函数的值域。例27:求函数的值域。(答案:)例28:求函数的值域。(答案:)7、数形结合法:例
7、29:求函数的值域.例30:求函数的值域。(答案:例32:求函数的值域。例33:求函数的最大值题型补充:1求下列函数的值域:; ; ; ;五、 函数的单调性1函数单调性的定义:2.证明函数单调性的一般方法: 定义法:设;作差(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。用导数证明: 若在某个区间A内有导数,则在A内为增函数;在A内为减函数。3.求单调区间的方法:定义法、导数法、图象法。4.复合函数在公共定义域上的单调性:若f与g的单调性相同,则为增函数;若f与g的单调性相反,则为减函数。注意:先求定义域,单调区间是定义域的子集。5一些有用的结论: 奇函
8、数在其对称区间上的单调性相同; 偶函数在其对称区间上的单调性相反; 在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。 函数在上单调递增;在上是单调递减。1、函数在区间为减函数,则实数的取值范围是( )A B C D2、函数与函数在区间1,2上都是减函数,则实数的取值范围是( )A B C D 3已知函数是上的减函数,则实数的取值范围是( )A B C D 4、若函数在上为增函数,则实数、的范围是 5、写出函数的单调区间,并指出在相应的区间上函数的单调性;6、写出函数的单调区间,并指出在相应区间上函数的单调性7、8、函数是定义在上的奇函数,
9、且(1)确定函数的解析式;(2)用定义证明:在上是增函数9、10、已知函数(,)(1)求证:在上递增;(2)若在上的值域是(),求的取值范围,并求相应的、的值11、已知函数有如下性质:如果常数0,那么该函数在0,上是减函数,在,上是增函数(1)如果函数(0)的值域为6,求的值;(2)求函数(0)在区间上的最小值;(3)研究函数(常数0)在定义域内的单调性,并说明理由;(4)对函数和(常数0)作出推广,使它们都是你所推广的函数的特例研究推广后的函数的单调性(只须写出结论,不必证明)12、已知,且。(1)设g(x)=ff(x),求g(x)的解析式;(2)设,试问是否存在实数,使在(-,-1)递减,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一轮 复习 函数 专题 基本 性质 20
限制150内