2015高考数学理科全国一卷及详解答案(共15页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2015高考数学理科全国一卷及详解答案(共15页).docx》由会员分享,可在线阅读,更多相关《2015高考数学理科全国一卷及详解答案(共15页).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上理科数学注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至3页,第卷3至5页。2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)设复数z满足=i,则|z|=(A)1 (B) (C) (D)2(2)sin20cos10-con160sin10= (A) (B) (C) (D)(3)设命题P:nN,则P为 (A)nN, (B) nN, (C)n
2、N, (D) nN, =(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432(C)0.36(D)0.312(5)已知是双曲线上的一点,是上的两个焦点,若,则的取值范围是(A)(-,)(B)(-,)(C)(,) (D)(,)(6)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各
3、为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛 B.22斛 C.36斛 D.66斛(7)设D为ABC所在平面内一点,则(A) (B) (C) (D) (8)函数的部分图像如图所示,则的单调递减区间为(A) (B) (C) (D) (9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8 (10) 的展开式中,的系数为(A)10 (B)20 (C)30(D)60(11) 圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则=
4、(A)1(B)2(C)4(D)812. 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A. B. C. D. 第II卷本卷包括必考题和选考题两部分。第(13)题第(21)题为必考题,每个试题考生都必须作答。第(22)题第(24)题未选考题,考生根据要求作答。二、填空题:本大题共3小题,每小题5分(13)若函数为偶函数,则 (14)一个圆经过椭圆的三个顶点,且圆心在轴上,则该圆的标准方程为 。(15)若满足约束条件则的最大值为 .(16)在平面四边形中,A=B=C=75,BC=2,则AB的取值范围是 三.解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)为数
5、列的前项和.已知,()求的通项公式:()设 ,求数列的前项和。(18)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC。(1)证明:平面AEC平面AFC(2)求直线AE与直线CF所成角的余弦值(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值。46.65636.8289.81.61469108.8表中,()根据散点图判断,与哪一个适宜作为年销售量
6、关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()已知这种产品的年利率z与x、y的关系为。根据()的结果回答下列问题:(i) 年宣传费x=49时,年销售量及年利润的预报值是多少?()年宣传费x为何值时,年利润的预报值最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:(20)(本小题满分12分)在直角坐标系中,曲线与直线交与两点,()当时,分别求C在点M和N处的切线方程;()轴上是否存在点P,使得当变动时,总有OPM=OPN?说明理由。(21)(本小题满分12分)已知函数()当a为何值时,x轴为曲线 的切线;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 高考 数学 理科 全国 一卷 详解 答案 15
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内