中考数学几何最值专题(共8页).doc
《中考数学几何最值专题(共8页).doc》由会员分享,可在线阅读,更多相关《中考数学几何最值专题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几何中的最值问题几何中最值问题包括:“面积最值”及“线段(和、差)最值”. 求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.一般处理方法:线段最大(小)值线段差最大线段和(周长)最小平移对称旋转平移对称旋转转化构造三角形使目标线段与定长线段构成三角形使点在线同侧(如下图)使点在线异侧(如下图)三角形三边关系定理三点共线时取得最值两点之间,线段最短垂线段最短常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个定点、一条定
2、直线时)3、三角形三边关系(已知两边长固定或其和、差固定时)|PA-PB|最大,需转化,使点在线同侧PA+PB最小,需转化,使点在线异侧 4、 圆外一点P与圆心的连线所成的直线与圆的两个交点,离P最近的点即为P到圆的最近距离,离P最远的点即为P到圆的最远距离类型一 线段和最小值1. 如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_cm 第1题图 第2题图2. 如图,点P是AOB内一定点,点M、N分别在边OA、OB上运动,若AOB=45,OP=3,则PMN周长的最小
3、值为 . 3. 如图,正方形ABCD的边长是4,DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为 . 第3题图 第4题图4. 如图,在菱形ABCD中,AB=2,A=120,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+QK的最小值为 .5. 如图,当四边形PABN的周长最小时,a= 6. 在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. 若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点F的坐标为 . 第5题图 第6题图变式加深:1、如图
4、,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. B. C. D. 2、如图,MON=90,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 3、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG与点H。若正方形的边长为2,则线段DH长度的最小值是 4、如图,点P在第一象限,ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的
5、正半轴上运动,运动过程中,点P到原点的最大距离是_.若将ABP中边PA的长度改为,另两边长度不变,则点P到原点的最大距离变为_类型二 线段差最大值1、如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于 2、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所 示若P是x轴上使得的值最大的点,Q是y轴上使得QA+QB的值最小的点,则3、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 几何 专题
限制150内