第二数学归纳法(共12页).doc
《第二数学归纳法(共12页).doc》由会员分享,可在线阅读,更多相关《第二数学归纳法(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第9讲 数学归纳法与第二数学归纳法一知识解读:数学归纳法是用于证明与正整数有关的数学命题的正确性的一种严格的推理方法在数学竞赛中占有很重要的地位1数学归纳法的基本形式(1)第一数学归纳法设是一个与正整数有关的命题,如果当()时,成立;假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立(2)第二数学归纳法设是一个与正整数有关的命题,如果当()时,成立;假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立2数学归纳法的其他形式(1)跳跃数学归纳法当时,成立,假设时成立,由此推得时,也成立,那么,根据对一切正整数时,成立(2)反向数学归纳法设是一个与正整数
2、有关的命题,如果对无限多个正整数成立;假设时,命题成立,则当时命题也成立,那么根据对一切正整数时,成立3应用数学归纳法的技巧(1)起点前移:有些命题对一切大于等于1的正整数正整数都成立,但命题本身对也成立,而且验证起来比验证时容易,因此用验证成立代替验证,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以因而为了便于起步,有意前移起点(2)起点增多:有些命题在由向跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多(4)选择合适的假设方式:归纳假设为一定要拘泥于
3、“假设时命题成立”不可,需要根据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明5归纳、猜想和证明在数学中经常通过特例或根据一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理方法称为不完全归纳法不完全归纳法得出的结论,只能是一种猜想,其正确与否,必须进一步检验或证明,经常采用数学归纳法证明不完全归纳法是发现规律、解决问题极好的方法二解题指导:1用数学归纳法证明:()证明:(1)当时,左边112,右边,不等式显然成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 数学 归纳法 12
限制150内