一次函数压轴题动点(教师版)(共21页).doc
《一次函数压轴题动点(教师版)(共21页).doc》由会员分享,可在线阅读,更多相关《一次函数压轴题动点(教师版)(共21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一次函数动点2如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(8,0),点A的坐标为(6,0)(1)求k的值(2)若P(x,y)是直线在第二象限内一个动点,试写出OPA的面积S与x的函数关系式,并写出自变量x的取值范围(3)当点P运动到什么位置时,OPA的面积为9,并说明理由考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。专题:动点型。分析:(1)将B点坐标代入y=kx+6中,可求k的值;(2)用OA的长,y分别表示OPA的底和高,用三角形的面积公式求S与x的函数关系式;(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置
2、解答:解:(1)将B(8,0)代入y=kx+6中,得8k+6=0,解得k=;(2)由(1)得y=x+6,又OA=6,S=6y=x+18,(8x0);(3)当S=9时,x+18=9,解得x=4,此时y=x+6=3,P(4,3)点评:本题考查了一次函数的综合运用,待定系数法求一次函数解析式,三角形面积的求法关键是将面积问题转化为线段的长,点的坐标来表示1如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰RtABC (1)求点C的坐标,并求出直线AC的关系式(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE(3)如
3、图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由考点:一次函数综合题。分析:(1)如图1,作CQx轴,垂足为Q,利用等腰直角三角形的性质证明ABOBCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明BCHBDF,再根据线段的相等关系证明BOEDGE,得出结论;(3)依题意确定P点坐标,可知BPN中BN变上的高,再由SPBN=SBCM,求BN,进而得出ON解答:解:(1)如图1,作CQx轴,垂足为Q,OBA+OAB=90,OBA+QBC=9
4、0,OAB=QBC,又AB=BC,AOB=Q=90,ABOBCQ,BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,C(3,1),由A(0,2),C(3,1)可知,直线AC:y=x+2;(2)如图2,作CHx轴于H,DFx轴于F,DGy轴于G,AC=AD,ABCB,BC=BD,BCHBDF,BF=BH=2,OF=OB=1,DG=OB,BOEDGE,BE=DE;(3)如图3,直线BC:y=x,P(,k)是线段BC上一点,P(,),由y=x+2知M(6,0),BM=5,则SBCM=假设存在点N使直线PN平分BCM的面积,则BN=,BN=,ON=,BNBM,点N在线段BM上,N(,0)点评:本题
5、考查了一次函数的综合运用关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解3如图,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图,请在直线AB和y轴上分别找一点M、N使CMN的周长最短,在图中作出图形,并求出点N的坐标考点:一次函数综合题。分析:(1)先利用待定系数法求得直线AB的解析式为y=x+6;再分别把x=2、3、4、5代入,
6、求出对应的纵坐标,从而得到图中阴影部分(不包括边界)所含格点的坐标;(2)首先根据直线AB的解析式可知OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则此时CMN的周长最短由D、E两点的坐标利用待定系数法求出直线DE的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标解答:解:(1)设直线AB的解析式为y=kx+b,把(1,5),(4,2)代入得,kx+b=5,4k+b=2,解得k=1,b=6,直线AB的解析式为y=x+6;当x=2,y=4;当x=3,y=3;当x=4,y=2;当x=5,y=1图中阴影部
7、分(不包括边界)所含格点的有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)一共10个;(2)直线y=x+6与x轴、y轴交于A、B两点,A点坐标为(6,0),B点坐标为(0,6),OA=OB=6,OAB=45点C关于直线AB的对称点为D,点C(4,0),AD=AC=2,ABCD,DAB=CAB=45,DAC=90,点D的坐标为(6,2);(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则NC=NE,点E(4,0)又点C关于直线AB的对称点为D,CM=DM,CMN的周长=CM+MN+NC=DM+MN
8、+NE=DE,此时周长最短设直线DE的解析式为y=mx+n把D(6,2),E(4,0)代入,得6m+n=2,4m+n=0,解得m=,n=,直线DE的解析式为y=x+令x=0,得y=,点N的坐标为(0,)故答案为10;(6,2)点评:本题考查了待定系数法求一次函数的解析式,横纵坐标都为整数的点的坐标的确定方法,轴对称的性质及轴对称最短路线问题,综合性较强,有一定难度4已知如图,直线y=x+4与x轴相交于点A,与直线y=x相交于点P(1)求点P的坐标;(2)求SOPA的值;(3)动点E从原点O出发,沿着OPA的路线向点A匀速运动(E不与点O、A重合),过点E分别作EFx轴于F,EBy轴于B设运动t
9、秒时,F的坐标为(a,0),矩形EBOF与OPA重叠部分的面积为S求:S与a之间的函数关系式考点:一次函数综合题。分析:(1)P点的纵坐标就是两个函数值相等时,从而列出方程求出坐标(2)把OA看作底,P的纵坐标为高,从而可求出面积(3)应该分两种情况,当在OP上时和PA时,讨论两种情况求解解答:解:(1)x+4=xx=3,y=所以P(3,)(2)0=x+4x=44=2故面积为2(3)当E点在OP上运动时,F点的横坐标为a,所以纵坐标为a,S=aaaa=a2当点E在PA上运动时,F点的横坐标为a,所以纵坐标为a+4S=(a+4)a(a+4)a=a2+2a点评:本题考查一次函数的综合应用,关键是根
10、据函数式知道横坐标能够求出纵坐标,横纵坐标求出后能够表示出坐标作顶点的矩形和三角形的面积以及求两个函数的交点坐标6如图,直线l1的解析表达式为:y=3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C(1)求直线l2的解析表达式;(2)求ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得ADP与ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由考点:一次函数综合题。专题:综合题。分析:(1)结合图形可知点B和点A在坐
11、标,故设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(2)已知l1的解析式,令y=0求出x的值即可得出点D在坐标;联立两直线方程组,求出交点C的坐标,进而可求出SADC;(3)ADP与ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离;(4)存在;根据平行四边形的性质,可知一定存在4个这样的点,规律为H、C坐标之和等于A、D坐标之和,设出代入即可得出H的坐标解答:解:(1)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,直线l2的解析表达式为 ;(2)由y=3x+3,令y=0,得3x+3=0,x=1,D(1,0);由 ,解得 ,C(2,3)
12、,AD=3,SADC=3|3|=;(3)ADP与ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离,即C纵坐标的绝对值=|3|=3,则P到AB距离=3,P纵坐标的绝对值=3,点P不是点C,点P纵坐标是3,y=1.5x6,y=3,1.5x6=3x=6,所以点P的坐标为(6,3);(4)存在;(3,3)(5,3)(1,3)点评:本题考查的是一次函数的性质,三角形面积的计算以及平行四边形的性质等等有关知识,有一定的综合性,难度中等偏上7如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(6,0),P(x,y)是直线y=x+6上一个动点(1)在点P运动过程中,试写出OPA
13、的面积s与x的函数关系式;(2)当P运动到什么位置,OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D是否存在这样的点P,使CODFOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;全等三角形的判定。专题:计算题;动点型。分析:(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图所示,求出C、D的坐标,设
14、直线CD的解析式是y=kx+b,把C(6,0),D(0,8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可解答:解:(1)P(x,y)代入y=x+6得:y=x+6,P(x,x+6),当P在第一、二象限时,OPA的面积是s=OAy=|6|(x+6)=x+18(x8)当P在第三象限时,OPA的面积是s=OA(y)=x18(x8)答:在点P运动过程中,OPA的面积s与x的函数关系式是s=x+18(x8)或s=x18(x8)解:(2)把s=代入得:=+18或=x18,解得:x=6.
15、5或x=6(舍去),x=6.5时,y=,P点的坐标是(6.5,)(3)解:假设存在P点,使CODFOE,如图所示:P的坐标是(,);如图所示:P的坐标是(,)存在P点,使CODFOE,P的坐标是(,)或(,)点评:本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求8如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C(1)若直线AB解析式为y=2x+12,求点C的坐标;求OAC的面积(2)如图,作AOC的平分
16、线ON,若ABON,垂足为E,OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由考点:一次函数综合题。专题:综合题;数形结合。分析:(1)联立两个函数式,求解即可得出交点坐标,即为点C的坐标欲求OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可(2)在OC上取点M,使OM=OP,连接MQ,易证POQMOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又ABOP,可得AEO=
17、CEO,即证AEOCEO(ASA),又OC=OA=4,利用OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3解答:解:(1)由题意,(2分)解得所以C(4,4)(3分)把y=0代入y=2x+12得,x=6,所以A点坐标为(6,0),(4分)所以(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,OP平分AOC,AOQ=COQ,又OQ=OQ,POQMOQ(SAS),(7分)PQ=MQ,AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AMOC时,AQ+MQ最小即AQ+PQ存在最小值ABOP,所以AEO=CEO,AEOCEO(ASA),OC=OA=4,OAC的面积为6
18、,所以AM=264=3,AQ+PQ存在最小值,最小值为3(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度9如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;(3)如图2,点B(2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EFx轴,F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 压轴 题动点 教师版 21
限制150内