重力势能、弹性势能、动能和动能定理(共22页).doc
《重力势能、弹性势能、动能和动能定理(共22页).doc》由会员分享,可在线阅读,更多相关《重力势能、弹性势能、动能和动能定理(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课 题重力势能、弹性势能、动能和动能定理教 学 目 的1、 掌握重力势能、弹性势能和动能的概念2、 熟练应用动能定理重 难 点动能定理的应用教 学 内 容【基础知识总结与巩固】一、重力做功和重力势能(1)重力做功特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关。物体沿闭合的路径运动一周,重力做功为零,其实恒力(大小方向不变)做功都具有这一特点。如物体由A位置运动到B位置,如图1所示,A、B两位置的高度分别为h1、h2,物体的质量为m,无论从A到B路径如何,重力做的功均为: WG=mgscosa=mg(h1h2)=mghlmgh2可见重力做功与
2、路径无关。(2)重力势能定义:物体的重力势能等于它所受重力与所处高度的乘积。公式:Ep=mgh。单位:焦(J) (3)重力势能的相对性与重力势能变化的绝对性 重力势能是一个相对量。它的数值与参考平面的选择相关。在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。重力势能变化的不变性(绝对性) 尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这体现了它的不变性(绝对性)。 某种势能的减小量,等于其相应力所做的功。重力势能的减小量,等于重力所做的功;弹簧弹性势能的减小量,等于弹簧弹力所做的功。重力势能的计算
3、公式Ep=mgh,只适用于地球表面及其附近处g值不变时的范围。若g值变化时。不能用其计算。二、 弹力做功和弹性势能探究弹力做功与弹性势能(1)功能关系是定义某种形式的能量的具体依据,从计算某种力的功入手是探究能的表达式的基本方法和思路。 (2)科学探究中必须善于类比已有知识和方法并进行迁移运用。(3)科学的构思和猜测是创造性的体现。可使探究工作具有针对性。 (4)分割转化累加,是求变力功的一般方法,这是微积分思想的具体应用。求和或累加可以通过图象上的面积求得。 计算弹簧弹力的功。由于弹力是一个变力,计算其功不能用W=Fs设弹簧的伸长量为x,则F=kx,画出Fx图象。如图5所示。则此图线与x轴所
4、夹面积就为弹力所做的功。由图象可得W弹=kk;x1、x2分别为始末状态时弹簧的形变量。 弹性势能的表达式的确定。由W弹=Ep=Ep1Ep2和W=kk;可知Ep=kx2。这与前面的讨论相符合(5)弹力做功与弹性势能变化的关系 如图所示。弹簧左端固定,右端连一物体。O点为弹簧的原长处。当物体由O点向右移动的过程中,弹簧被拉长。弹力对物体做负功,弹性势能增加;当物体由O点向左移动的过程中,弹簧被压缩,弹力对物体做负功,弹簧弹性势能增加 当物体由A点向右移动的过程中,弹簧的压缩量减小,弹力对物体做正功,弹性势能减小;当物体由A点向左移动的过程中,弹簧的伸长量减小,弹力做正功,弹性势能减小。总之,当弹簧
5、的弹力做正功时。弹簧的弹性势能减小,弹性势能变成其他形式的能;当弹簧的弹力做负功时,弹簧的弹性势能增大,其他形式的能转化为弹簧的弹性势能。这一点与重力做功跟重力势能变化的关系相似。依功能关系由图象确定弹性势能的表达式如图7所示,弹簧的劲度系数为k左端固定,不加外力时。右端在O处,今用力F缓慢向右拉弹簧,使弹簧伸长经A处到B处。手克服弹簧弹力所做的功,其大小应该等于外力F对弹簧所做的功,即为弹簧的弹性势能增加量。由拉力F=kx画出F随x变化的图线(见图5所示),根据W=Fs知,图线与横轴所围的面积应该等于F所做的功。有W=(kx1+kx2)(x2x1)= kxkx所以Ep=kx2说明: 在Ep=
6、kx2中,Ep为弹簧的弹性势能,k为弹簧的劲度系数,x为形变量(即压缩或伸长的长度);本公式不要求学生掌握和使用。 弹簧的弹性势能Ep=kx2,是指弹簧的长度为原长时规定它的弹性势能为零时的表达式。我们完全可以规定弹簧某一任意长度时的势能为零势能,只不过在处理问题时不方便。在通常情况下,我们规定弹簧处在原长时的势能为零势能。三、动能1.定义:物体由于运动而具有的能叫做动能.2.公式:Ek=mv2,动能的单位是焦耳.说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要
7、速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能.四、动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E-E,W是外力所做的总功,E、E分别为初末状态的动能.若初、末速度分别为v1、v2,则E=mv21,E=mv.3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程
8、.利用动能定理来求解变力所做的功通常有以下两种情况:如果物体只受到一个变力的作用,那么:W=Ek2-Ek1.只要求出做功过程中物体的动能变化量Ek,也就等于知道了这个过程中变力所做的功.如果物体同时受到几个力作用,但是其中只有一个力F1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W1+W其他=Ek.可见应把变力所做的功包括在上述动能定理的方程中.注意以下两点:a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.五、理解动能定理(1)力(
9、合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。这就是动能定理,其数学表达式为W=Ek2Ek1。通常,动能定理数学表达式中的W有两种表述:一是每个力单独对物体做功的代数和,二是合力对物体所做的功。这样,动能定理亦相应地有两种不同的表述: 外力对物体所做功的代数和等于物体动能的变化。 合外力对物体所做的功等于物体动能的变化【重难点例题启发与方法总结】【例题1】如图,桌面离地高为h,质量为m的小球从离桌面高为H处自由下落,不计空气阻力,设桌面为零势能面,则小球开始下落处的重力势能( B )Amgh BmgH Cmg(H+h) Dmg(H-h)【解析】重力势能具有相对性,开始下落处
10、在零势能面上面高H处,故该处的重力势能为mgH。【例题2】在离地面80m高处由静止开始释放一质量为0.2kg的小球,不计空气阻力,g取10m/s2,以最高点所在水平面为零势能面。求: (1)第2s末小球的重力势能; (2)第2s内重力势能变化了多少?【解析】(1)2s末小球下落了h=gt2/2=20m,故重力做功WG=mgh=40J。由WG= -EP得:40= -(EP2 EP1)= -EP2,故2s末小球的重力势能为EP2= -40J。(2)第2s内物体下落的高度为h=15m,故重力做功为WG=mgh=30J。因此,重力势能变化了EP= -30J,即减少了30J。【例题3】如图所示,轻质绳子
11、绕过光滑的定滑轮,它的一端拴住一个质量是10kg的物体,人竖直向下拉绳子,使物体处于静止状态。AB长4m,然后人拉着绳子的另一端沿水平方向缓慢地由A移动到C,A、C相距3m,在这个过程中人做的功为多少?【解析】人做的功等于物体重力势能的增量,故有 W=EP=mgh=mg(xBC -xAB)=100J。【例题4】一根长为2m,重为200N的均匀木板放在水平地面上,现将它的一端从地面提高0.5m,另一端仍搁在地面上,则外力所做的功为 ( D ) A400J B200J C100J D50J【解析】外力做功引起物体能量(势能)变化,物体的重心升高了0.25m,即重力势能增加了mgh=50J,故外力做
12、功为50J。【例题5】在水平地面上平铺着n块相同的砖,每块砖的质量都为m,厚度为d。若将这n块砖一块一块地叠放起来,至少需要做多少功?【解析1】n块砖平铺在水平地面上时,系统重心离地的高度为。当将它们叠放起来时,系统重心离地高度为。所以,至少需要做功。【例题6】一质量分布均匀的不可伸长的绳索重为G,A、B两端固定在水平天花板上,如图所示,今在绳的最低点C施加一竖直向下的力将绳绷直,在此过程中,绳索AB的重心位置(A )A逐渐升高B逐渐降低C先降低后升高D始终不变【解析】拉力向下拉绳索的过程对绳索做正功,使绳索的重力势能逐渐增加绳索的重心逐渐升高。点评:功是能量转化的量度。外力做功仅引起重力势能
13、变化,那么无论是恒力做功还是变力做功,都可用重力势能的变化来度量,外力做正功会引起重力势能增大。【例题7】关于弹性势能,下列说法中正确的是( AB )A任何发生弹性形变的物体,都具有弹性势能B任何具有弹性势能的物体,一定发生了弹性形变C物体只要发生形变,就一定具有弹性势能D弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关【解析】任何发生弹性形变的物体都具有弹性势能,任何具有弹性势能的物体一定发生了弹性形变。物体发生的形变若不是弹性形变,就不具有弹性势能。弹簧的弹性势能除了跟弹簧被拉伸或压缩的长度有关外,还跟弹簧劲度系数的大小有关。【例题8】如图所示,劲度系数为k的轻质弹簧一端固定,另一端与物块拴接
14、,物块放在光滑水平面上。现用外力缓慢拉动物块,若外力所做的功为W,则物块移动了多大的距离?【解析】外力做的功。所以,弹簧的伸长量亦即物块移动的距离。【例题9】如图所示,质量为m物体静止在地面上,物体上面连着一个直立的轻质弹簧,弹簧的劲度系数为k。现用手拉住弹簧上端,使弹簧上端缓慢提升高度h,此时物体已经离开地面,求拉力所做的功。【解析】拉力做功,增加了物体的重力势能和弹簧的弹性势能。物体离开地面后,弹簧的伸长量为。可见,物体上升的高度为。从而,物体重力势能的增加量为。弹簧的弹性势能为。拉力所做的功为【例题10】在h高处,以初速度v0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为(
15、C )A. B. C. D. 【解析】对小球下落的整个过程应用动能定理,有,解得。【例题11】将质量m=2kg的小钢球从离地面H=2m高处由静止开始释放,落入沙中h=5cm深处,不计空气阻力,求沙子对钢球的平均阻力。(g取10m/s2)【解析1】设钢球着地时的速度为v,对钢球在空中运动阶段应用动能定理,有;对钢球在沙中运动阶段应用动能定理,有。由以上两式解得沙子对钢球的平均阻力N=820N。【例题11】一人用力踢质量为1kg的足球,使球由静止以10m/s的速度沿水平方向飞出,假设人踢球时对球的平均作用力为200N,球在水平方向运动了20m,那么人对球所做的功为 ( )A50J B200J C4
16、000J D0J【解析】人对球做的功等于球获得的初动能,即W=mv2/2=50J。【例题12】 质量为m的物体以速度竖直向上抛出,物体落回到地面时,速度大小为(设物体在运动过程中所受空气阻力大小不变),求:(1)物体运动过程中所受空气阻力的大小。(2)物体以初速度竖直上抛时最大高度,若物体落地时碰撞过程中无能量损失,求物体运动的总路程。解析:本题给出了运动的始末状态,只要明确运动过程中各力做功情况,即可用动能定理求解。(1)设物体到达的最大高度为h,受空气阻力为f,则由动能定理得上升阶段下降阶段由式得,(2)设上升的最大高度为,则由动能定理得将代入上式得物体从抛出到停止时,设总路程为S,则由动
17、能定理得归纳总结:动能定理只涉及物体运动的始末动能及外力做功,故只需明确物体运动的始末状态,及各外力在运动过程中做功情况,进而求外力做的总功。在解此题还要注意到重力与阻力做功过程的不同。重力上升做负功、下降做正功,而阻力总是做负功。 【例题13】(变力做功)一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P点很缓慢地移动到Q点,如图所示,则力F所做的功为多少?分析:由于F随的变大而变大是变力,不能用来求功,因小球的运动过程是缓慢的,因而任意时刻都可以看作是平衡状态,小球上升过程只有重力和F这两个力做功,由动能定理得归纳总结:(1)对研究对象进行受力分析,判定各力做功
18、情况(确定是变力做功,还是恒力做功)确定初末状态。(2)注意重力做功与路径无关。【例题14】 总质量为M的列车,沿平直的轨道匀速前进,其质量为m的车厢中途脱钩。当司机发现时,机车已驶过的路程为L,于是立刻关闭油门,撤去牵引力,设阻力与重力成正比,机车牵引力恒定不变。求列车完全停止时,机车和车厢的距离是多少?解析:设车厢从脱钩到停止的位移为,机车从发现脱钩到停止位移为,牵引力为F。机车从发现脱钩后只受到阻力f,列出动能定理方程:(阻力与重力的比例系数k)对于车厢:对于机车脱钩后的全过程:因为列车原来为匀速,所以,即把代入有式有【重难点关联练习巩固与方法总结】1沿着高度相同,坡度不同,粗糙程度也不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重力 势能 弹性 动能 定理 22
限制150内