二重积分的概念与性质教案(共4页).docx
《二重积分的概念与性质教案(共4页).docx》由会员分享,可在线阅读,更多相关《二重积分的概念与性质教案(共4页).docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上7.1二重积分的基本概念(教案)主讲人:孙杰华教学目的:理解二重积分的概念、性质教学重难点:二重积分的概念、二重积分的几何意义.教学方法:讲授为主教学内容:一、二重积分的概念1曲顶柱体的体积设有一空间立体,它的底是面上的有界区域,它的侧面是以的边界曲线为准线,而母线平行于轴的柱面,它的顶是曲面,称这种立体为曲顶柱体.与求曲边梯形的面积的方法类似,我们可以这样来求曲顶柱体的体积:(1)用任意一组曲线网将区域分成个小区域,以这些小区域的边界曲线为准线,作母线平行于轴的柱面,这些柱面将原来的曲顶柱体分划成个小曲顶柱体,.(假设所对应的小曲顶柱体为,这里既代表第个小区域,又表
2、示它的面积值, 既代表第个小曲顶柱体,又代表它的体积值.),从而图7.1 (2)由于连续,对于同一个小区域来说,函数值的变化不大因此,可以将小曲顶柱体近似地看作小平顶柱体,于是. (3)整个曲顶柱体的体积近似值为.(4)为得到的精确值,只需让这个小区域越来越小,即让每个小区域向某点收缩为此,我们引入区域直径的概念:一个闭区域的直径是指区域上任意两点距离的最大者.所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零.设个小区域直径中的最大者为,则.2二重积分的定义设是闭区域上的有界函数, 将区域分成个小区域其中,既表示第个小区域,也表示它的面积, 表示它的直径.,作乘积,作和式 ,若极限存在,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二重积分 概念 性质 教案
限制150内