T检验、F检验和统计学意义(共3页).doc
《T检验、F检验和统计学意义(共3页).doc》由会员分享,可在线阅读,更多相关《T检验、F检验和统计学意义(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上【统计学】T检验、F检验和统计学意义(P值或sig值)1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null h
2、ypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。 F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。 2,统计学意义(P值或sig值) 19楼空间eo-yk8w%p;u结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关
3、联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。 Ix_ T-ZQL03,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。 举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。 19楼空间3tko:c&Z(u?两样本(如某班男生和女生
4、)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢? 19楼空间6o4yJ U0j+F会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同? 9x+/KM.)x2SR0为此,我们进行t检定,算出一个t检定值。 19楼空间 d&En,h?K+iV与统计学家建立的以总体中没差别作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。 s3AKD ?k)_E0若显著性sig值很少,比如0.05(少於5%机率),亦即是说,如果总体真的没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的
5、情况。虽然还是有5%机会出错(1-0.05=5%),但我们还是可以比较有信心的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,总体中男女生不存差异的虚无假设应予拒绝,简言之,总体应该存在著差异。 每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。 至於F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 检验 统计学 意义
限制150内